Suppr超能文献

模拟聚合物基体与碳纳米管之间的界面电导率对纳米复合材料电导率的影响。

Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites.

作者信息

Zare Yasser, Rhee Kyong Yop

机构信息

Department of Mechanical Engineering, College of Engineering, Kyung Hee University Giheung Yongin Gyeonggi 446-701 Republic of Korea

出版信息

RSC Adv. 2020 Jan 2;10(1):424-433. doi: 10.1039/c9ra08220d. eCollection 2019 Dec 20.

Abstract

This article presents the role of interfacial conductivity between the polymer matrix and nanoparticles in the electrical conductivity of polymer carbon nanotube (CNT) nanocomposites (PCNT) by simple equations. In this methodology, CNT size, CNT conductivity, CNT waviness and interfacial conductivity express the effective length and effective concentration of CNT in PCNT. Additionally, the percolation threshold and the percentages of CNT in the conductive networks are defined by the above mentioned terms. Finally, a simple model is developed to suggest the electrical conductivity of PCNT by CNT dimensions, CNT conductivity, CNT waviness, interphase thickness, interfacial conductivity and tunneling distance. The developed model is applied to show the roles of all parameters in the conductivity. Also, the experimental levels of percolation threshold and conductivity for several samples are compared to the predictions to validate the developed equations. The interfacial conductivity directly controls the electrical conductivity of nanocomposites. In addition, thick interphase, low waviness and short tunneling distance increase the conductivity. Moreover, the predictions show good agreement with the experimental measurements, providing evidence in support of the developed equations.

摘要

本文通过简单的公式阐述了聚合物基体与纳米粒子之间的界面电导率在聚合物-碳纳米管(CNT)纳米复合材料(PCNT)电导率中的作用。在该方法中,CNT尺寸、CNT电导率、CNT波纹度和界面电导率表征了PCNT中CNT的有效长度和有效浓度。此外,渗流阈值和导电网络中CNT的百分比由上述各项定义。最后,建立了一个简单模型,通过CNT尺寸、CNT电导率、CNT波纹度、界面厚度、界面电导率和隧穿距离来预测PCNT的电导率。所建立的模型用于展示所有参数在电导率中的作用。同时,将几个样品的渗流阈值和电导率的实验值与预测值进行比较,以验证所建立的公式。界面电导率直接控制着纳米复合材料的电导率。此外,厚界面、低波纹度和短隧穿距离会提高电导率。而且,预测结果与实验测量值吻合良好,为所建立的公式提供了支持证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe0/9047612/a41ffd16e282/c9ra08220d-f1.jpg

相似文献

7
Modeling of Electrical Conductivity for Polymer-Carbon Nanofiber Systems.
Materials (Basel). 2022 Oct 10;15(19):7041. doi: 10.3390/ma15197041.

本文引用的文献

1
Percolation analysis of the electrical conductive network in a polymer nanocomposite by nanorod functionalization.
RSC Adv. 2019 Nov 7;9(62):36324-36333. doi: 10.1039/c9ra04680a. eCollection 2019 Nov 4.
2
Preparation and 3D-printing of highly conductive polylactic acid/carbon nanotube nanocomposites local enrichment strategy.
RSC Adv. 2019 Sep 23;9(51):29980-29986. doi: 10.1039/c9ra05684j. eCollection 2019 Sep 18.
5
Property improvement of multi-walled carbon nanotubes/polypropylene composites with high filler loading interfacial modification.
RSC Adv. 2019 Sep 17;9(50):29087-29096. doi: 10.1039/c9ra05493f. eCollection 2019 Sep 13.
6
Covalently linked benzimidazole-containing reduced graphene oxide/polyaniline nanocomposites as electrode materials.
RSC Adv. 2019 Aug 8;9(42):24646-24653. doi: 10.1039/c9ra03728d. eCollection 2019 Aug 2.
7
A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors.
RSC Adv. 2019 Mar 18;9(16):8778-8881. doi: 10.1039/c8ra09577a. eCollection 2019 Mar 15.
9
Fabrication of polyaniline-graphene/polystyrene nanocomposites for flexible gas sensors.
RSC Adv. 2019 Apr 23;9(22):12496-12506. doi: 10.1039/c9ra00936a. eCollection 2019 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验