Argota-Perez Raul, Robbins Jennifer, Green Andrew, Herk Marcel van, Korreman Stine, Vásquez-Osorio Eliana
Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
The University of Manchester, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester, United Kingdom.
Phys Imaging Radiat Oncol. 2022 Apr 13;22:13-19. doi: 10.1016/j.phro.2022.04.002. eCollection 2022 Apr.
Anatomical changes during radiotherapy pose a challenge to robustness of plans. Principal component analysis (PCA) is commonly used to model such changes. We propose a toolbox to evaluate how closely a given PCA model can represent actual deformations seen in the patient and highlight regions where the model struggles to capture these changes.
We propose to calculate a residual error map from the difference between an actual displacement vector field (DVF) and the closest DVF that the PCA model can produce. This was done by taking the inner product of the DVF with the PCA components from the model. As a global measure of error, the 90th percentile of the residual errors ) across the whole scan was used. As proof of principle, we demonstrated this approach on both patient-specific cases and a population-based PCA in head and neck (H&N) cancer patients. These models were created using deformation data from deformable registrations between the planning computed tomography and cone-beam computed tomography (CBCTs), and were evaluated against DVFs from registrations of CBCTs not used to create the model.
For our example cases, the oropharyngeal and the nasal cavity regions showed the largest local residual error, indicating the PCA models struggle to predict deformations seen in these regions. ranged from 0.4 mm to 6.3 mm across the different models.
A method to quantitatively evaluate how well PCA models represent observed anatomical changes was proposed. We demonstrated our approach on H&N PCA models, but it can be applied to other sites.
放疗过程中的解剖结构变化对计划的稳健性构成挑战。主成分分析(PCA)常用于对这类变化进行建模。我们提出了一个工具箱,用于评估给定的PCA模型能够多精确地代表患者实际出现的变形,并突出显示该模型难以捕捉这些变化的区域。
我们建议根据实际位移矢量场(DVF)与PCA模型能够生成的最接近DVF之间的差异来计算残差误差图。这是通过将DVF与模型中的PCA成分进行内积来实现的。作为误差的全局度量,使用了整个扫描中残差误差的第90百分位数( )。作为原理验证,我们在头颈部(H&N)癌症患者的特定病例和基于人群的PCA上展示了这种方法。这些模型是使用计划计算机断层扫描与锥形束计算机断层扫描(CBCT)之间的可变形配准的变形数据创建的,并根据未用于创建模型的CBCT配准的DVF进行评估。
对于我们的示例病例,口咽和鼻腔区域显示出最大的局部残差误差,表明PCA模型难以预测这些区域中出现的变形。不同模型的 范围为0.4毫米至6.3毫米。
提出了一种定量评估PCA模型代表观察到的解剖结构变化程度的方法。我们在H&N PCA模型上展示了我们的方法,但它也可应用于其他部位。