Suppr超能文献

基于 4D CBCT 的 PCA 运动模型的日间变化定量分析。

Quantifying day-to-day variations in 4DCBCT-based PCA motion models.

机构信息

American University of Sharjah, Sharjah, United Arab Emirates.

出版信息

Biomed Phys Eng Express. 2020 Apr 9;6(3):035020. doi: 10.1088/2057-1976/ab817e.

Abstract

The aim of this paper is to quantify the day-to-day variations of motion models derived from pre-treatment 4-dimensional cone beam CT (4DCBCT) fractions for lung cancer stereotactic body radiotherapy (SBRT) patients. Motion models are built by (1) applying deformable image registration (DIR) on each 4DCBCT image with respect to a reference image from that day, resulting in a set of displacement vector fields (DVFs), and (2) applying principal component analysis (PCA) on the DVFs to obtain principal components representing a motion model. Variations were quantified by comparing the PCA eigenvectors of the motion model built from the first day of treatment to the corresponding eigenvectors of the other motion models built from each successive day of treatment. Three metrics were used to quantify the variations: root mean squared (RMS) difference in the vectors, directional similarity, and an introduced metric called the Euclidean Model Norm (EMN). EMN quantifies the degree to which a motion model derived from the first fraction can represent the motion models of subsequent fractions. Twenty-one 4DCBCT scans from five SBRT patient treatments were used in this retrospective study. Experimental results demonstrated that the first two eigenvectors of motion models across all fractions have smaller RMS (0.00017), larger directional similarity (0.528), and larger EMN (0.678) than the last three eigenvectors (RMS: 0.00025, directional similarity: 0.041, and EMN: 0.212). The study concluded that, while the motion model eigenvectors varied from fraction to fraction, the first few eigenvectors were shown to be more stable across treatment fractions than others. This supports the notion that a pre-treatment motion model built from the first few PCA eigenvectors may remain valid throughout a treatment course. Future work is necessary to quantify how day-to-day variations in these models will affect motion reconstruction accuracy for specific clinical tasks.

摘要

本文旨在量化从肺癌立体定向体部放射治疗(SBRT)患者的预处理四维锥形束 CT(4DCBCT)分次中得出的运动模型的日常变化。运动模型是通过以下两种方法构建的:(1)针对当天的参考图像,对每个 4DCBCT 图像应用变形图像配准(DIR),得到一组位移矢量场(DVF),(2)对 DVF 应用主成分分析(PCA),以获得代表运动模型的主成分。通过比较从治疗第一天构建的运动模型的 PCA 特征向量与从每个后续治疗日构建的其他运动模型的相应特征向量,来量化变化。使用三个度量标准来量化变化:向量的均方根(RMS)差、方向相似度和引入的称为欧几里德模型范数(EMN)的度量标准。EMN 量化了从第一部分得出的运动模型对后续部分运动模型的代表性程度。本回顾性研究使用了来自五位 SBRT 患者治疗的 21 次 4DCBCT 扫描。实验结果表明,所有分次中运动模型的前两个特征向量的 RMS(0.00017)较小,方向相似度(0.528)较大,而最后三个特征向量的 RMS(0.00025)、方向相似度(0.041)和 EMN(0.212)较大。研究得出的结论是,尽管运动模型特征向量在分次之间存在差异,但前几个特征向量在治疗分次之间比其他特征向量更为稳定。这支持了这样一种观点,即从前几个 PCA 特征向量构建的预处理运动模型可能在整个治疗过程中保持有效。未来的工作需要量化这些模型的日常变化如何影响特定临床任务的运动重建准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/426d/11293621/03c5a18d0e9d/nihms-2007157-f0001.jpg

相似文献

8
4-Dimensional Cone Beam Computed Tomography-Measured Target Motion Underrepresents Actual Motion.4 维锥形束 CT 测量的靶区运动低估了实际运动。
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):932-940. doi: 10.1016/j.ijrobp.2018.04.056. Epub 2018 Apr 27.

本文引用的文献

9
High-quality four-dimensional cone-beam CT by deforming prior images.基于变形先验图像的高质量四维锥形束 CT
Phys Med Biol. 2013 Jan 21;58(2):231-46. doi: 10.1088/0031-9155/58/2/231. Epub 2012 Dec 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验