Suppr超能文献

泡沫镍上的NiSe/NiSe作为超高倍率析氢电催化剂:具有内建电场和高效界面电荷转移的常见阴离子异质结构。

NiSe/NiSe on nickel foam as an ultra-high-rate HER electrocatalyst: common anion heterostructure with built-in electric field and efficient interfacial charge transfer.

作者信息

Ma Xin, Yang Jingbo, Xu Xiaoqi, Yang Hangqi, Peng Chuang

机构信息

School of Resource and Environmental Sciences, Wuhan University Wuhan 430072 P. R. China

出版信息

RSC Adv. 2021 Oct 25;11(55):34432-34439. doi: 10.1039/d1ra06183f.

Abstract

One grand challenge in green hydrogen production is to design efficient HER electrocatalysts for high-rate alkaline water electrolysis. Nickel chalcogenide coatings on nickel foam (NF) are promising HER electrocatalysts, but their high-rate performances are yet to be improved. The current work reports a NiSe/NiSe@NF for alkaline HER, which requires an overpotential of only 336 mV to achieve an ultra-high current density of 1250 mA cm, outperforming commercial Pt/C. The low onset potential of NiSe/NiSe@NF is attributed to its morphology, and high surface area, as well as multiple active sites and electronic structure modulation because of the heterostructure. While these features are well-known within the current knowledge framework, new understandings are proposed on its superior high-rate performance. The common-anion feature offers abundant interfacial Ni-Se bonding and low resistance for efficient interfacial charge transfer, whereas the heterovalent-Ni-cation in the heterostructure results in a built-in electric field that further enhances the high-rate performance. This work provides new insights on both the mechanistic and methodological aspects of designing high-performance electrocatalysts operating at high current densities.

摘要

绿色制氢中的一个重大挑战是设计用于高速率碱性水电解的高效析氢电催化剂。泡沫镍(NF)上的硫族化镍涂层是很有前景的析氢电催化剂,但其高速率性能仍有待提高。当前工作报道了一种用于碱性析氢的NiSe/NiSe@NF,其仅需336 mV的过电位就能实现1250 mA cm的超高电流密度,性能优于商业Pt/C。NiSe/NiSe@NF的低起始电位归因于其形态、高表面积,以及由于异质结构导致的多个活性位点和电子结构调制。虽然这些特征在当前知识框架内是众所周知的,但对其卓越的高速率性能提出了新的理解。共阴离子特征提供了丰富的界面Ni-Se键合和低电阻,以实现高效的界面电荷转移,而异质结构中的异价Ni阳离子会产生一个内建电场,进一步提高高速率性能。这项工作为设计在高电流密度下运行的高性能电催化剂的机理和方法方面提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5941/9042723/fbd0b5efb3af/d1ra06183f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验