Suppr超能文献

用于多视图聚类的动态引导度量表示学习

Dynamic guided metric representation learning for multi-view clustering.

作者信息

Zheng Tingyi, Zhang Yilin, Wang Yuhang

机构信息

College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China.

Department of Electrical and control Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi, China.

出版信息

PeerJ Comput Sci. 2022 Mar 8;8:e922. doi: 10.7717/peerj-cs.922. eCollection 2022.

Abstract

Multi-view clustering (MVC) is a mainstream task that aims to divide objects into meaningful groups from different perspectives. The quality of data representation is the key issue in MVC. A comprehensive meaningful data representation should be with the discriminant characteristics in a single view and the correlation of multiple views. Considering this, a novel framework called Dynamic Guided Metric Representation Learning for Multi-View Clustering (DGMRL-MVC) is proposed in this paper, which can cluster multi-view data in a learned latent discriminated embedding space. Specifically, in the framework, the data representation can be enhanced by multi-steps. Firstly, the class separability is enforced with Fisher Discriminant Analysis (FDA) within each single view, while the consistence among different views is enhanced based on Hilbert-Schmidt independence criteria (HSIC). Then, the 1st enhanced representation is obtained. In the second step, a dynamic routing mechanism is introduced, in which the location or direction information is added to fulfil the expression. After that, a generalized canonical correlation analysis (GCCA) model is used to get the final ultimate common discriminated representation. The learned fusion representation can substantially improve multi-view clustering performance. Experiments validated the effectiveness of the proposed method for clustering tasks.

摘要

多视图聚类(MVC)是一项主流任务,旨在从不同视角将对象划分为有意义的组。数据表示的质量是多视图聚类中的关键问题。一个全面且有意义的数据表示应在单视图中具有判别特征以及多视图之间的相关性。考虑到这一点,本文提出了一种名为多视图聚类动态引导度量表示学习(DGMRL - MVC)的新颖框架,它能够在一个学习到的潜在判别嵌入空间中对多视图数据进行聚类。具体而言,在该框架中,数据表示可通过多步骤得到增强。首先,在每个单视图内利用Fisher判别分析(FDA)增强类可分性,同时基于希尔伯特 - 施密特独立性准则(HSIC)增强不同视图之间的一致性。然后,得到第一次增强后的表示。在第二步中,引入一种动态路由机制,其中添加位置或方向信息以实现表示。之后,使用广义典型相关分析(GCCA)模型得到最终的终极共同判别表示。所学习到的融合表示能够显著提高多视图聚类性能。实验验证了所提方法在聚类任务中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b9d/9044235/5c5c283a7386/peerj-cs-08-922-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验