Suppr超能文献

用于阿尔茨海默病诊断的不完全多模态表示学习。

Incomplete multi-modal representation learning for Alzheimer's disease diagnosis.

机构信息

School of Life Sciences, Tiangong University, Tianjin 300387, China; Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin, China.

School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China.

出版信息

Med Image Anal. 2021 Apr;69:101953. doi: 10.1016/j.media.2020.101953. Epub 2021 Jan 1.

Abstract

Alzheimers disease (AD) is a complex neurodegenerative disease. Its early diagnosis and treatment have been a major concern of researchers. Currently, the multi-modality data representation learning of this disease is gradually becoming an emerging research field, attracting widespread attention. However, in practice, data from multiple modalities are only partially available, and most of the existing multi-modal learning algorithms can not deal with the incomplete multi-modality data. In this paper, we propose an Auto-Encoder based Multi-View missing data Completion framework (AEMVC) to learn common representations for AD diagnosis. Specifically, we firstly map the original complete view to a latent space using an auto-encoder network framework. Then, the latent representations measuring statistical dependence learned from the complete view are used to complement the kernel matrix of the incomplete view in the kernel space. Meanwhile, the structural information of original data and the inherent association between views are maintained by graph regularization and Hilbert-Schmidt Independence Criterion (HSIC) constraints. Finally, a kernel based multi-view method is applied to the learned kernel matrix for the acquisition of common representations. Experimental results achieved on Alzheimers Disease Neuroimaging Initiative (ADNI) datasets validate the effectiveness of the proposed method.

摘要

阿尔茨海默病(AD)是一种复杂的神经退行性疾病。其早期诊断和治疗一直是研究人员关注的主要问题。目前,该疾病的多模态数据表示学习逐渐成为一个新兴的研究领域,引起了广泛关注。然而,在实际应用中,多模态数据往往只有部分模态是可用的,而大多数现有的多模态学习算法无法处理不完整的多模态数据。在本文中,我们提出了一种基于自动编码器的多视图缺失数据补全框架(AEMVC),用于学习 AD 诊断的通用表示。具体来说,我们首先使用自动编码器网络框架将原始完整视图映射到潜在空间。然后,从完整视图中学习到的测量统计相关性的潜在表示用于在核空间中补全不完整视图的核矩阵。同时,通过图正则化和希尔伯特-施密特独立性准则(HSIC)约束来保持原始数据的结构信息和视图之间的固有关联。最后,应用核方法对学习到的核矩阵进行处理,以获取通用表示。在阿尔茨海默病神经影像学倡议(ADNI)数据集上的实验结果验证了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验