Suppr超能文献

不同 CT 重建下肺部良恶性结节的分类与分割算法。

Classification and Segmentation Algorithm in Benign and Malignant Pulmonary Nodules under Different CT Reconstruction.

机构信息

Department of Radiology, The People's Hospital of Xuancheng City, Anhui 242000, China.

Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.

出版信息

Comput Math Methods Med. 2022 Apr 21;2022:3490463. doi: 10.1155/2022/3490463. eCollection 2022.

Abstract

METHODS

The imaging data of 55 patients with chest CT plain scan in the Xuancheng People's Hospital were collected retrospectively. The data of each patient included lung window reconstruction, mediastinum reconstruction, and bone window reconstruction. The depth neural network and 3D convolution neural network were used to construct the model and train the classification and segmentation algorithm. The pathological results were the gold standard for benign and malignant pulmonary nodules. The classification and segmentation algorithms under three CT reconstruction algorithms were compared and analyzed by analysis of variance.

RESULTS

Under the three CT reconstruction algorithms, the classification accuracy of pulmonary nodule density types was 98.2%, 96.4%, and 94.5%, respectively. The Dice coefficients of all nodule segmentation were 80.32% ± 5.91%, 79.83% ± 6.12%, and 80.17% ± 5.89%, respectively. The diagnostic accuracy between benign and malignant pulmonary nodules under different reconstruction algorithms was 98.2%, 96.4%, and 94.5%, respectively. There was no significant difference in the classification accuracy, Dice coefficients, and diagnostic accuracy of pulmonary nodules under three different reconstruction algorithms (all > 0.05).

CONCLUSION

The depth neural network algorithm combined with 3D convolution neural network has a good efficiency in identifying benign and malignant pulmonary nodules under different CT reconstruction classification and segmentation algorithms.

摘要

方法

回顾性收集宣城市人民医院 55 例胸部 CT 平扫的影像数据。每位患者的数据包括肺窗重建、纵隔重建和骨窗重建。使用深度神经网络和 3D 卷积神经网络构建模型并训练分类和分割算法。病理结果为良性和恶性肺结节的金标准。通过方差分析比较和分析三种 CT 重建算法下的分类和分割算法。

结果

在三种 CT 重建算法下,肺结节密度类型的分类准确率分别为 98.2%、96.4%和 94.5%。所有结节分割的 Dice 系数分别为 80.32%±5.91%、79.83%±6.12%和 80.17%±5.89%。不同重建算法下良性和恶性肺结节的诊断准确率分别为 98.2%、96.4%和 94.5%。三种不同重建算法下肺结节的分类准确率、Dice 系数和诊断准确率差异均无统计学意义(均>0.05)。

结论

深度神经网络算法结合 3D 卷积神经网络在不同 CT 重建分类和分割算法下对识别良性和恶性肺结节具有良好的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6881/9050279/f9dea66698d7/CMMM2022-3490463.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验