Ávila-Niño José A, Olvera Lilian I
CONACYT - Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Querétaro Sanfandila, Pedro Escobedo Querétaro C. P. 76703 Mexico
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Apartado Postal 70-360, CU, Coyoacán 04510 México D. F. Mexico.
RSC Adv. 2020 Mar 24;10(20):11743-11749. doi: 10.1039/d0ra00825g. eCollection 2020 Mar 19.
High performance organogel polyelectrolytes were synthesized by super acid catalyst step-growth polycondensation of isatin and the non-activated multiring aromatic -terphenyl. Subsequently, a chemical modification reaction was carried out to obtained quaternary ammonium functionalized polyelectrolytes through a nucleophilic substitution reaction with (3-bromopropyl)trimethylammonium bromide and potassium carbonate at room temperature. Different functionalization degrees were obtained by controlling the molar ratio of the polymer and the modification agent. The organogel polyelectrolytes were formed due to the high phase segregation and self-assembling observed owing to the amphiphilic character of the material (hydrophobic backbone and hydrophilic fragment grafted). The organogel polyelectrolytes were used to fabricate supercapacitors using two commercial graphite electrodes. These polyelectrolytes displayed good ionic conductivity without the use of another doping agent such as salts, acids or ionic liquids. In this work, a strong correlation of functionalization degree and ionic conductivity of the polyelectrolytes and capacitance of the supercapacitors was observed. The ionic conductivity of the polyelectrolytes reached 0.46 mS cm for the 100% functionalization degree, meanwhile the polyelectrolyte with the 10% functionalization degree shows 0.036 mS cm. Li-doped polyelectrolytes showed higher ionic conductivity due the presence of extra ionic charges (2.26 and 0.2 mS cm for the polyelectrolytes with the 100% and 10% of functionalization degree, respectively). The principal novelty of this work lies in the possibility of modulating the ionic conductivity of organogels and the capacitance of supercapacitors by chemical modifications. The capacitance of the supercapacitors was 1.17 mF cm for the 100% functionalized polyelectrolyte and is higher in comparison with the polyelectrolyte with 10% functionalization degree (0.68 mF cm) measured at a discharge current of 52 μA cm by galvanostatic charge discharge technique. Additionally, when lithium salt (lithium triflate) was added, the polyelectrolytes retained a gel consistency, increasing the ionic conductivity and capacitance. For the doped polyelectrolytes, the areal capacitance reaches 1.37 mF cm for the 100% functionalization degree polyelectrolyte with lithium triflate. These organogel polyelectrolytes open the possibility to design flexible and all solid-state supercapacitors without the risk of leakage.
通过异吲哚酮与非活化多环芳烃 - 三联苯在超强酸催化剂作用下的逐步缩聚反应,合成了高性能有机凝胶聚电解质。随后,进行化学改性反应,在室温下通过与(3 - 溴丙基)三甲基溴化铵和碳酸钾的亲核取代反应,得到季铵官能化聚电解质。通过控制聚合物与改性剂的摩尔比,可获得不同的官能化程度。由于材料的两亲性(疏水主链和亲水片段接枝)导致高相分离和自组装,从而形成有机凝胶聚电解质。使用两个商用石墨电极,将这些有机凝胶聚电解质用于制造超级电容器。这些聚电解质在不使用盐、酸或离子液体等其他掺杂剂的情况下,表现出良好的离子导电性。在这项工作中,观察到聚电解质的官能化程度与离子导电性以及超级电容器的电容之间存在很强的相关性。对于100%官能化程度的聚电解质,其离子电导率达到0.46 mS/cm,而官能化程度为10%的聚电解质的离子电导率为0.036 mS/cm。锂掺杂的聚电解质由于存在额外的离子电荷,表现出更高的离子导电性(官能化程度为100%和10%的聚电解质分别为2.26和0.2 mS/cm)。这项工作的主要新颖之处在于通过化学改性来调节有机凝胶的离子导电性和超级电容器的电容的可能性。对于100%官能化的聚电解质,通过恒电流充放电技术在放电电流为52 μA/cm²时测量,超级电容器的电容为1.17 mF/cm²,与官能化程度为10%的聚电解质(0.68 mF/cm²)相比更高。此外,当加入锂盐(三氟甲磺酸锂)时,聚电解质保持凝胶状态,提高了离子导电性和电容。对于掺杂的聚电解质,官能化程度为100%且含有三氟甲磺酸锂的聚电解质的面积电容达到1.37 mF/cm²。这些有机凝胶聚电解质为设计柔性全固态超级电容器提供了可能性,且不存在泄漏风险。