de Lima Lorena Azevedo, Ingelman Henri, Brahmbhatt Kush, Reinmets Kristina, Barry Craig, Harris Audrey, Marcellin Esteban, Köpke Michael, Valgepea Kaspar
ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia.
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia.
Front Bioeng Biotechnol. 2022 Apr 12;10:879578. doi: 10.3389/fbioe.2022.879578. eCollection 2022.
Gas fermentation offers both fossil carbon-free sustainable production of fuels and chemicals and recycling of gaseous and solid waste using gas-fermenting microbes. Bioprocess development, systems-level analysis of biocatalyst metabolism, and engineering of cell factories are advancing the widespread deployment of the commercialised technology. Acetogens are particularly attractive biocatalysts but effects of the key physiological parameter-specific growth rate (μ)-on acetogen metabolism and the gas fermentation bioprocess have not been established yet. Here, we investigate the μ-dependent bioprocess performance of the model-acetogen in CO and syngas (CO + CO+H) grown chemostat cultures and assess systems-level metabolic responses using gas analysis, metabolomics, transcriptomics, and metabolic modelling. We were able to obtain steady-states up to μ ∼2.8 day (∼0.12 h) and show that faster growth supports both higher yields and productivities for reduced by-products ethanol and 2,3-butanediol. Transcriptomics data revealed differential expression of 1,337 genes with increasing μ and suggest that uses transcriptional regulation to a large extent for facilitating faster growth. Metabolic modelling showed significantly increased fluxes for faster growing cells that were, however, not accompanied by gene expression changes in key catabolic pathways for CO and H metabolism. Cells thus seem to maintain sufficient "baseline" gene expression to rapidly respond to CO and H availability without delays to kick-start metabolism. Our work advances understanding of transcriptional regulation in acetogens and shows that faster growth of the biocatalyst improves the gas fermentation bioprocess.
气体发酵既可以实现无化石碳的燃料和化学品可持续生产,又能利用气体发酵微生物对气态和固态废物进行回收利用。生物工艺开发、生物催化剂代谢的系统水平分析以及细胞工厂的工程设计正在推动这项商业化技术的广泛应用。产乙酸菌是特别有吸引力的生物催化剂,但关键生理参数——比生长速率(μ)对产乙酸菌代谢和气体发酵生物工艺的影响尚未明确。在此,我们研究了模式产乙酸菌在以一氧化碳和合成气(CO + CO₂ + H₂)为原料的恒化器培养物中,依赖于比生长速率的生物工艺性能,并使用气体分析、代谢组学、转录组学和代谢建模来评估系统水平的代谢反应。我们能够获得高达μ ∼2.8天⁻¹(∼0.12 h⁻¹)的稳态,并表明更快的生长对于减少副产物乙醇和2,3 - 丁二醇的产量和生产率均有支持作用。转录组学数据显示,随着μ的增加,有1337个基因差异表达,这表明该菌在很大程度上利用转录调控来促进更快的生长。代谢建模显示,生长更快的细胞通量显著增加,然而,关键的CO和H₂代谢分解代谢途径中的基因表达并未发生变化。因此,细胞似乎维持了足够的“基线”基因表达,以便在CO和H₂可利用时迅速做出反应,毫不延迟地启动代谢。我们的工作增进了对产乙酸菌转录调控的理解,并表明生物催化剂更快的生长改善了气体发酵生物工艺。