Suppr超能文献

通过定向诱变深入了解自养乙醇梭菌的二氧化碳固定途径

Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.

作者信息

Liew Fungmin, Henstra Anne M, Winzer Klaus, Köpke Michael, Simpson Sean D, Minton Nigel P

机构信息

BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, United Kingdom LanzaTech Inc., Skokie, Illinois, USA.

BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, United Kingdom.

出版信息

mBio. 2016 May 24;7(3):e00427-16. doi: 10.1128/mBio.00427-16.

Abstract

UNLABELLED

The future sustainable production of chemicals and fuels from nonpetrochemical resources and reduction of greenhouse gas emissions are two of the greatest societal challenges. Gas fermentation, which utilizes the ability of acetogenic bacteria such as Clostridium autoethanogenum to grow and convert CO2 and CO into low-carbon fuels and chemicals, could potentially provide solutions to both. Acetogens fix these single-carbon gases via the Wood-Ljungdahl pathway. Two enzyme activities are predicted to be essential to the pathway: carbon monoxide dehydrogenase (CODH), which catalyzes the reversible oxidation of CO to CO2, and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which combines with CODH to form a CODH/ACS complex for acetyl-CoA fixation. Despite their pivotal role in carbon fixation, their functions have not been confirmed in vivo By genetically manipulating all three CODH isogenes (acsA, cooS1, and cooS2) of C. autoethanogenum, we highlighted the functional redundancies of CODH by demonstrating that cooS1 and cooS2 are dispensable for autotrophy. Unexpectedly, the cooS1 inactivation strain showed a significantly reduced lag phase and a higher growth rate than the wild type on H2 and CO2 During heterotrophic growth on fructose, the acsA inactivation strain exhibited 61% reduced biomass and the abolishment of acetate production (a hallmark of acetogens), in favor of ethanol, lactate, and 2,3-butanediol production. A translational readthrough event was discovered in the uniquely truncated (compared to those of other acetogens) C. autoethanogenum acsA gene. Insights gained from studying the function of CODH enhance the overall understanding of autotrophy and can be used for optimization of biotechnological production of ethanol and other commodities via gas fermentation.

IMPORTANCE

Gas fermentation is an emerging technology that converts the greenhouse gases CO2 and CO in industrial waste gases and gasified biomass into fuels and chemical commodities. Acetogenic bacteria such as Clostridium autoethanogenum are central to this bioprocess, but the molecular and genetic characterization of this microorganism is currently lacking. By targeting all three of the isogenes encoding carbon monoxide dehydrogenase (CODH) in C. autoethanogenum, we identified the most important CODH isogene for carbon fixation and demonstrated that genetic inactivation of CODH could improve autotrophic growth. This study shows that disabling of the Wood-Ljungdahl pathway via the inactivation of acsA (encodes CODH) significantly impairs heterotrophic growth and alters the product profile by abolishing acetate production. Moreover, we discovered a previously undescribed mechanism for controlling the production of this enzyme. This study provides valuable insights into the acetogenic pathway and can be used for the development of more efficient and productive strains for gas fermentation.

摘要

未标注

未来从非石化资源可持续生产化学品和燃料以及减少温室气体排放是两项重大社会挑战。气体发酵利用产乙酸细菌(如自养乙醇梭菌)生长并将二氧化碳和一氧化碳转化为低碳燃料和化学品的能力,有可能为这两个问题提供解决方案。产乙酸菌通过伍德-龙格达尔途径固定这些单碳气体。预计该途径中有两种酶活性至关重要:一氧化碳脱氢酶(CODH),催化一氧化碳可逆氧化为二氧化碳;乙酰辅酶A(acetyl-CoA)合成酶(ACS),与CODH结合形成CODH/ACS复合物以固定乙酰辅酶A。尽管它们在碳固定中起关键作用,但其功能尚未在体内得到证实。通过对自养乙醇梭菌的所有三个CODH同基因(acsA、cooS1和cooS2)进行基因操作,我们通过证明cooS1和cooS2对于自养生长是可有可无的,突出了CODH的功能冗余性。出乎意料的是,cooS1失活菌株在氢气和二氧化碳上的延滞期明显缩短,生长速率高于野生型。在果糖异养生长期间,acsA失活菌株的生物量减少了61%,且乙酸盐产生(产乙酸菌的一个标志)消失,转而有利于乙醇、乳酸和2,3-丁二醇的产生。在独特截短的(与其他产乙酸菌相比)自养乙醇梭菌acsA基因中发现了一个翻译通读事件。从研究CODH功能中获得的见解增强了对自养生长的总体理解,并可用于通过气体发酵优化乙醇和其他商品的生物技术生产。

重要性

气体发酵是一种新兴技术,可将工业废气和气化生物质中的温室气体二氧化碳和一氧化碳转化为燃料和化学商品。产乙酸细菌如自养乙醇梭菌是这一生物过程的核心,但目前缺乏对这种微生物的分子和遗传特征描述。通过针对自养乙醇梭菌中编码一氧化碳脱氢酶(CODH)的所有三个同基因,我们确定了碳固定中最重要的CODH同基因,并证明CODH的基因失活可改善自养生长。这项研究表明,通过acsA(编码CODH)失活使伍德-龙格达尔途径失活会显著损害异养生长,并通过消除乙酸盐产生改变产物谱。此外,我们发现了一种以前未描述的控制这种酶产生的机制。这项研究为产乙酸途径提供了有价值的见解,并可用于开发更高效和高产的气体发酵菌株。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ae/4895105/8092118f2991/mbo0031628280001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验