Suppr超能文献

用于高效全无机钙钛矿太阳能电池的碳电极工程

Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells.

作者信息

Mi Longfei, Zhang Yan, Chen Taotao, Xu Enze, Jiang Yang

机构信息

Department of Materials Science and Engineering, School of Civil Engineering, Qingdao University of Technology Qingdao Shandong 266000 P. R. China

School of Materials Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P. R. China.

出版信息

RSC Adv. 2020 Mar 26;10(21):12298-12303. doi: 10.1039/d0ra00288g. eCollection 2020 Mar 24.

Abstract

Carbon-based inorganic perovskite solar cells (PSCs) have demonstrated an excellent performance in the field of photovoltaics owing to their simple fabrication techniques, low-cost and superior stability. Despite the lower efficiency of devices with a carbon electrode compared with the conventional structure, the potential applications in large scale have attracted increasing attention. Herein, we employ a mixed carbon electrode inorganic PSC by incorporating one-dimensional structure carbon nanotubes (CNTs) and two-dimensional TiC-MXene nanosheets into a commercial carbon paste. This mixed carbon electrode, which is different from the pure carbon electrode in showing a point-to-point contact, provides a network structure and multi-dimensional charge transfer path, which effectively increases the conductivity of the carbon electrode and carriers transport. A respectable power conversion efficiency of 7.09% is obtained through carbon/CNT/MXene mixed electrode in CsPbBr-based solar cells.

摘要

碳基无机钙钛矿太阳能电池(PSCs)因其简单的制造工艺、低成本和卓越的稳定性,在光伏领域展现出优异的性能。尽管与传统结构相比,含碳电极器件的效率较低,但其大规模潜在应用已引起越来越多的关注。在此,我们通过将一维结构的碳纳米管(CNTs)和二维TiC-MXene纳米片掺入商用碳糊中,制备了一种混合碳电极无机PSC。这种混合碳电极与纯碳电极不同,呈现点对点接触,提供了一种网络结构和多维电荷转移路径,有效提高了碳电极的导电性和载流子传输。通过在基于CsPbBr的太阳能电池中使用碳/CNT/MXene混合电极,获得了7.09%的可观功率转换效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f788/9051046/bd02b9bcf79a/d0ra00288g-f1.jpg

相似文献

1
Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells.
RSC Adv. 2020 Mar 26;10(21):12298-12303. doi: 10.1039/d0ra00288g. eCollection 2020 Mar 24.
2
Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr perovskite solar cells.
Dalton Trans. 2018 Nov 21;47(43):15283-15287. doi: 10.1039/c8dt03296c. Epub 2018 Oct 3.
4
Carbon Nanotube Bridging Method for Hole Transport Layer-Free Paintable Carbon-Based Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):916-923. doi: 10.1021/acsami.8b18530. Epub 2018 Dec 28.
5
Efficient Carbon-Based CsPbBr Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material.
Nanomicro Lett. 2018;10(2):34. doi: 10.1007/s40820-018-0187-3. Epub 2018 Jan 16.
6
Carbon-Based CsPbBr Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability.
ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33649-33655. doi: 10.1021/acsami.6b11393. Epub 2016 Dec 1.
7
Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, challenges and fulfillment.
Nanoscale Adv. 2023 Feb 17;5(6):1492-1526. doi: 10.1039/d3na00005b. eCollection 2023 Mar 14.
9
High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 3):3151-3158. doi: 10.1016/j.jcis.2021.11.050. Epub 2021 Nov 13.
10
Flexible, All-Inorganic CsPbBr Perovskite Solar Cells Tailored by Heat-resistant Muscovite Substrates.
ChemSusChem. 2021 Mar 22;14(6):1512-1516. doi: 10.1002/cssc.202002796. Epub 2021 Feb 10.

引用本文的文献

2
A Review on Interface Engineering of MXenes for Perovskite Solar Cells.
Nanomicro Lett. 2023 May 9;15(1):123. doi: 10.1007/s40820-023-01083-9.
3
MXenes Thin Films: From Fabrication to Their Applications.
Molecules. 2022 Aug 2;27(15):4925. doi: 10.3390/molecules27154925.
4
Improved Perovskite/Carbon Interface through Hot-Pressing: A Case Study for CsPbBr-Based Perovskite Solar Cells.
ACS Omega. 2022 May 11;7(20):16877-16883. doi: 10.1021/acsomega.1c06108. eCollection 2022 May 24.
5
Direct deposition of Sn-doped CsPbBr perovskite for efficient solar cell application.
RSC Adv. 2021 Jan 15;11(6):3380-3389. doi: 10.1039/d0ra09202a. eCollection 2021 Jan 14.
6
2D MXene: A Potential Candidate for Photovoltaic Cells? A Critical Review.
Adv Sci (Weinh). 2022 Apr;9(10):e2104743. doi: 10.1002/advs.202104743. Epub 2022 Feb 15.
7
MXene-Based Materials for Solar Cell Applications.
Nanomaterials (Basel). 2021 Nov 23;11(12):3170. doi: 10.3390/nano11123170.
8
A Brief Review of the Role of 2D Mxene Nanosheets toward Solar Cells Efficiency Improvement.
Nanomaterials (Basel). 2021 Oct 15;11(10):2732. doi: 10.3390/nano11102732.
9
Application of MXenes in Perovskite Solar Cells: A Short Review.
Nanomaterials (Basel). 2021 Aug 23;11(8):2151. doi: 10.3390/nano11082151.
10
MXenes for Solar Cells.
Nanomicro Lett. 2021 Feb 21;13(1):78. doi: 10.1007/s40820-021-00604-8.

本文引用的文献

1
Thermodynamically stabilized β-CsPbI-based perovskite solar cells with efficiencies >18.
Science. 2019 Aug 9;365(6453):591-595. doi: 10.1126/science.aav8680.
2
The Effect of Decomposed PbI on Microscopic Mechanisms of Scattering in CHNHPbI Films.
Nanoscale Res Lett. 2019 Jun 18;14(1):208. doi: 10.1186/s11671-019-3022-y.
3
Niobium Incorporation into CsPbIBr for Stable and Efficient All-Inorganic Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2019 Jun 5;11(22):19994-20003. doi: 10.1021/acsami.9b03622. Epub 2019 May 24.
4
High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells.
Small. 2018 Nov;14(47):e1802738. doi: 10.1002/smll.201802738. Epub 2018 Oct 9.
5
Bifunctional Stabilization of All-Inorganic α-CsPbI Perovskite for 17% Efficiency Photovoltaics.
J Am Chem Soc. 2018 Oct 3;140(39):12345-12348. doi: 10.1021/jacs.8b07927. Epub 2018 Sep 24.
6
Enhancing Hybrid Perovskite Detectability in the Deep Ultraviolet Region with Down-Conversion Dual-Phase (CsPbBr-CsPbBr) Films.
J Phys Chem Lett. 2018 Apr 5;9(7):1592-1599. doi: 10.1021/acs.jpclett.8b00429. Epub 2018 Mar 15.
8
High-Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency.
Angew Chem Int Ed Engl. 2018 Mar 26;57(14):3787-3791. doi: 10.1002/anie.201800019. Epub 2018 Feb 27.
9
Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges.
Adv Mater. 2018 Mar;30(12):e1704561. doi: 10.1002/adma.201704561. Epub 2018 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验