Suppr超能文献

用于增强CMOS兼容片上微型超级电容器性能的旋涂异质堆叠电极。

Spin-Coated Heterogenous Stacked Electrodes for Performance Enhancement in CMOS-Compatible On-Chip Microsupercapacitors.

作者信息

Vyas Agin, Hajibagher Simin Zare, Méndez-Romero Ulises, Thurakkal Shameel, Li Qi, Haque Mazharul, Azega R K, Wang Ergang, Zhang Xiaoyan, Lundgren Per, Enoksson Peter, Smith Anderson

机构信息

Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Kemivägen 9, 41296, Gothenburg, Sweden.

Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 41296, Gothenburg, Sweden.

出版信息

ACS Appl Energy Mater. 2022 Apr 25;5(4):4221-4231. doi: 10.1021/acsaem.1c03745. Epub 2022 Mar 24.

Abstract

Integration of microsupercapacitors (MSCs) with on-chip sensors and actuators with nanoenergy harvesters can improve the lifetime of wireless sensor nodes in an Internet-of-Things (IoT) architecture. However, to be easy to integrate with such harvester technology, MSCs should be fabricated through a complementary-metal-oxide-semiconductor (CMOS) compatible technology, ubiquitous in electrode choice with the capability of heterogeneous stacking of electrodes for modulation in properties driven by application requirements. In this article, we address both these issues through fabrication of multielectrode modular, high energy density microsupercapacitors (MSC) containing reduced graphene oxide (GO), GO-heptadecane-9-amine (GO-HD9A), rGO-octadecylamine (rGO-ODA), and rGO-heptadecane-9-amine (rGO-HD9A) that stack through a scalable, CMOS compatible, high-wafer-yield spin-coating process. Furthermore, we compare the performance of the stack with individual electrode MSCs fabricated through the same process. The individual electrodes, in the presence of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfony)imide (EMIM-TFSI), demonstrate a capacitance of 38, 30, 36, and 105 μF cm at 20 mV s whereas the fabricated stack of electrodes demonstrates a high capacitance of 280 μF cm at 20 mV s while retaining and enhancing the material-dependent capacitance, charge retention, and power density.

摘要

将微型超级电容器(MSCs)与片上传感器、执行器以及纳米能量采集器集成,可延长物联网(IoT)架构中无线传感器节点的使用寿命。然而,为便于与此类采集器技术集成,MSCs应采用互补金属氧化物半导体(CMOS)兼容技术制造,在电极选择方面具有普遍性,能够通过异质堆叠电极来根据应用需求调制性能。在本文中,我们通过制造包含还原氧化石墨烯(GO)、氧化石墨烯-十七烷-9-胺(GO-HD9A)、还原氧化石墨烯-十八烷基胺(rGO-ODA)和还原氧化石墨烯-十七烷-9-胺(rGO-HD9A)的多电极模块化、高能量密度微型超级电容器(MSC)来解决这两个问题,这些电极通过可扩展的、CMOS兼容的、高晶圆产量的旋涂工艺进行堆叠。此外,我们将该堆叠结构的性能与通过相同工艺制造的单个电极MSCs的性能进行了比较。在1-乙基-3-甲基咪唑双(三氟甲基磺酰)亚胺(EMIM-TFSI)存在的情况下,单个电极在20 mV s时的电容分别为38、30、36和105 μF/cm²,而制造的电极堆叠在20 mV s时表现出280 μF/cm²的高电容,同时保留并提高了与材料相关的电容、电荷保持率和功率密度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d7/9044397/fc8e6eefc5c0/ae1c03745_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验