Suppr超能文献

基于碳微机电系统的交替堆叠式二硫化钼@还原氧化石墨烯-碳纳米管微型超级电容器,具有高电容和能量密度。

Carbon-MEMS-Based Alternating Stacked MoS @rGO-CNT Micro-Supercapacitor with High Capacitance and Energy Density.

作者信息

Yang Wei, He Liang, Tian Xiaocong, Yan Mengyu, Yuan Hui, Liao Xiaobin, Meng Jiashen, Hao Zhimeng, Mai Liqiang

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.

出版信息

Small. 2017 Jul;13(26). doi: 10.1002/smll.201700639. Epub 2017 May 30.

Abstract

A novel process to fabricate a carbon-microelectromechanical-system-based alternating stacked MoS @rGO-carbon-nanotube (CNT) micro-supercapacitor (MSC) is reported. The MSC is fabricated by successively repeated spin-coating of MoS @rGO/photoresist and CNT/photoresist composites twice, followed by photoetching, developing, and pyrolysis. MoS @rGO and CNTs are embedded in the carbon microelectrodes, which cooperatively enhance the performance of the MSC. The fabricated MSC exhibits a high areal capacitance of 13.7 mF cm and an energy density of 1.9 µWh cm (5.6 mWh cm ), which exceed many reported carbon- and MoS -based MSCs. The MSC also retains 68% of capacitance at a current density of 2 mA cm (5.9 A cm ) and an outstanding cycling performance (96.6% after 10 000 cycles, at a scan rate of 1 V s ). Compared with other MSCs, the MSC in this study is fabricated by a low-cost and facile process, and it achieves an excellent and stable electrochemical performance. This approach could be highly promising for applications in integration of micro/nanostructures into microdevices/systems.

摘要

报道了一种制备基于碳微机电系统的交替堆叠式二硫化钼@还原氧化石墨烯-碳纳米管(CNT)微型超级电容器(MSC)的新工艺。该MSC通过依次重复旋涂二硫化钼@还原氧化石墨烯/光刻胶和碳纳米管/光刻胶复合材料两次,然后进行光刻、显影和热解来制备。二硫化钼@还原氧化石墨烯和碳纳米管嵌入碳微电极中,协同提高了MSC的性能。所制备的MSC表现出13.7 mF/cm²的高面积电容和1.9 μWh/cm²(5.6 mWh/cm³)的能量密度,超过了许多已报道的基于碳和二硫化钼的MSC。该MSC在2 mA/cm²(5.9 A/cm³)的电流密度下还保留了68%的电容,并且具有出色的循环性能(在扫描速率为1 V/s时,10000次循环后为96.6%)。与其他MSC相比,本研究中的MSC通过低成本且简便的工艺制备,并实现了优异且稳定的电化学性能。这种方法对于将微/纳米结构集成到微器件/系统中的应用可能极具前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验