Suppr超能文献

铼配合物将一氧化碳光化学转化为一氧化碳:从实验检测到的单烷基碳酸酯配合物对一氧化碳和碳酸氢根形成的理论见解。

Photochemical conversion of CO to CO by a Re complex: theoretical insights into the formation of CO and HCO from an experimentally detected monoalkyl carbonate complex.

作者信息

Isegawa Miho, Sharma Akhilesh K

机构信息

International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan

International Research Center for Elements Science (IRCELS), Institute for Chemical Research (ICR), Kyoto University Uji Kyoto 611-0011 Japan.

出版信息

RSC Adv. 2021 Nov 24;11(60):37713-37725. doi: 10.1039/d1ra07286b. eCollection 2021 Nov 23.

Abstract

Triethanolamine (TEOA) has been used for the photocatalytic reduction of CO, and the experimental studies have demonstrated that the TEOA increases the catalytic efficiency. In addition, the formation of a carbonate complex has been confirmed in the Re photocatalytic system where DMF and TEOA are used as solvents. In this study, we survey the reaction pathways of the photocatalytic conversions of CO to CO + HO and CO to CO + HCO by -Re(bpy)(CO)Br in the presence of TEOA using density functional theory (DFT) and domain-based local pair natural orbital coupled cluster approach, DLPNO-CCSD(T). Under light irradiation, the solvent-coordinated Re complex is first reduced to form a monoalkyl carbonate complex in the doublet pathway. This doublet pathway is kinetically advantageous over the singlet pathway. To reduce carbon dioxide, the Re complex needs to be reduced by two electrons. The second electron reduction occurs after the monoalkyl carbonate complex is protonated. The second reduction involves the dissociation of the monoalkyl carbonate ligand, and the dissociated ligand recombines the Re center carbon to generate Re-COOH species, which further reacts with CO to generate tetracarbonyl complex and HCO . The two-electron reduced ligand-free Re complex converts CO to CO and HO. The pathways leading to HO formation have lower barriers than the pathways leading to HCO formation, but their portion of formation must depend on proton concentration.

摘要

三乙醇胺(TEOA)已被用于光催化还原CO,实验研究表明TEOA提高了催化效率。此外,在以N,N-二甲基甲酰胺(DMF)和TEOA作为溶剂的铼(Re)光催化体系中,已证实形成了碳酸酯配合物。在本研究中,我们使用密度泛函理论(DFT)和基于域的定域对自然轨道耦合簇方法DLPNO-CCSD(T),研究了在TEOA存在下,Re(bpy)(CO)Br将CO光催化转化为CO₂ + H₂O以及将CO转化为CO₂ + HCO₂⁻的反应途径。在光照下,溶剂配位的Re配合物首先在双重态途径中被还原形成单烷基碳酸酯配合物。该双重态途径在动力学上比单重态途径更有利。为了还原二氧化碳,Re配合物需要被两个电子还原。第二次电子还原发生在单烷基碳酸酯配合物质子化之后。第二次还原涉及单烷基碳酸酯配体的解离,解离的配体与Re中心碳重新结合生成Re-COOH物种,其进一步与CO反应生成四羰基配合物和HCO₂⁻。双电子还原的无配体Re配合物将CO转化为CO₂和H₂O。导致生成H₂O的途径比导致生成HCO₂⁻的途径具有更低的势垒,但其生成比例必须取决于质子浓度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff45/9044022/14fdeb8c831b/d1ra07286b-f1.jpg

相似文献

2
Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO Reduction Using Mn, Re, and Ru Catalysts.
Acc Chem Res. 2022 Mar 1;55(5):616-628. doi: 10.1021/acs.accounts.1c00616. Epub 2022 Feb 8.
5
Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3.
Inorg Chem. 2016 Mar 21;55(6):3192-8. doi: 10.1021/acs.inorgchem.6b00379. Epub 2016 Mar 1.
6
Photocatalytic conversion of CO to CO by Ru(II) and Os(II) octahedral complexes: a DFT/TDDFT study.
Dalton Trans. 2024 Apr 16;53(15):6791-6801. doi: 10.1039/d4dt00125g.
7
Mechanistic study of photocatalytic CO reduction using a Ru(ii)-Re(i) supramolecular photocatalyst.
Chem Sci. 2021 May 20;12(28):9682-9693. doi: 10.1039/d1sc02213j. eCollection 2021 Jul 21.
8
Photochemical reduction of CO into CO coupling with triethanolamine decomposition.
RSC Adv. 2023 Oct 30;13(45):31616-31621. doi: 10.1039/d3ra06585e. eCollection 2023 Oct 26.
9
Heterogeneous photocatalytic performances of CO reduction based on the [Emim]BF + TEOA + HO system.
RSC Adv. 2019 Nov 4;9(61):35841-35846. doi: 10.1039/c9ra06235a. eCollection 2019 Oct 31.
10
Electrocatalytic CO Reduction by [Re(CO)Cl(3-(pyridin-2-yl)-5-phenyl-1,2,4-triazole)] and [Re(CO)Cl(3-(2-pyridyl)-1,2,4-triazole)].
ACS Omega. 2022 Sep 14;7(38):34089-34097. doi: 10.1021/acsomega.2c03278. eCollection 2022 Sep 27.

本文引用的文献

1
The ORCA quantum chemistry program package.
J Chem Phys. 2020 Jun 14;152(22):224108. doi: 10.1063/5.0004608.
2
Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics.
J Chem Theory Comput. 2020 Apr 14;16(4):2224-2235. doi: 10.1021/acs.jctc.9b01109. Epub 2020 Apr 1.
3
Selective Oxidation of H and CO by NiIr Catalyst in Aqueous Solution: A DFT Mechanistic Study.
Inorg Chem. 2020 Jan 21;59(2):1014-1028. doi: 10.1021/acs.inorgchem.9b02400. Epub 2020 Jan 3.
4
CO capture by Mn(i) and Re(i) complexes with a deprotonated triethanolamine ligand.
Chem Sci. 2019 Jan 17;10(10):3080-3088. doi: 10.1039/c8sc04389b. eCollection 2019 Mar 14.
5
Unexpected wavelength dependency of the photocatalytic CO reduction performance of the well-known (bpy)Re(CO)Cl complex.
Chem Commun (Camb). 2019 Jan 16;55(5):600-603. doi: 10.1039/c8cc08742c. Epub 2018 Nov 27.
8
Photocatalytic Reduction of Low Concentration of CO.
J Am Chem Soc. 2016 Oct 26;138(42):13818-13821. doi: 10.1021/jacs.6b08824. Epub 2016 Oct 11.
10
Universal Solvation Model Based on the Generalized Born Approximation with Asymmetric Descreening.
J Chem Theory Comput. 2009 Sep 8;5(9):2447-64. doi: 10.1021/ct900312z. Epub 2009 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验