Suppr超能文献

利用双光子聚合纳米结构进行霉菌毒素检测的表面增强拉曼光谱技术。

SERS using two-photon polymerized nanostructures for mycotoxin detection.

作者信息

Liu Qing, Vanmol Koen, Lycke Sylvia, Van Erps Jürgen, Vandenabeele Peter, Thienpont Hugo, Ottevaere Heidi

机构信息

Department of Applied Physics and Photonics, Brussels Photonics, Vrije Universiteit Brussel and Flanders Make Pleinlaan 2 B-1050 Brussels Belgium

Department of Chemistry, Ghent University Krijgslaan 281 - S3 B-9000 Ghent Belgium.

出版信息

RSC Adv. 2020 Apr 8;10(24):14274-14282. doi: 10.1039/d0ra01909g. eCollection 2020 Apr 6.

Abstract

Improved chemical- and bio-sensing with Surface Enhanced Raman Spectroscopy (SERS) requires nanostuctures that can be flexibly designed and fabricated with different physical and optical properties. Here, we present nano-pillar arrays ranging from 200 nm to 600 nm as SERS substrates for mycotoxin detection that are fabricated by means of two-photon polymerization. We built a nominal shape and a voxel-based model for simulating the enhancement of the electric field of the nano-pillar arrays using the Finite-Difference Time-Domain (FDTD) method. A new model was built based on the Atomic Force Microscopy (AFM) data obtained from the fabricated nanostructures and introduced into a FDTD model. We demonstrated the enhancement behavior by measuring the Raman spectrum of Rhodamine B solutions. Both the simulations and experimental results suggest that the 200 nm nano-pillar array has the highest Enhancement Factor (EF). Besides, we determined the limit of detection of the 200 nm pillar array by performing Raman measurements on Rhodamine B solutions with different concentrations. The detection limit of our 200 nm nano-pillar array is 0.55 μM. Finally we discriminated 1 ppm deoxynivalenol and 1.25 ppm fumonisin b1 in acetonitrile solutions by our SERS substrate in combination with principal component analysis. This versatile approach for SERS substrates fabrication gives new opportunities for material characterization in chemical and biological applications.

摘要

利用表面增强拉曼光谱(SERS)改进化学和生物传感需要能够灵活设计和制造具有不同物理和光学特性的纳米结构。在此,我们展示了通过双光子聚合制造的、高度在200纳米至600纳米之间的纳米柱阵列作为用于霉菌毒素检测的SERS基底。我们构建了一个标称形状和一个基于体素的模型,使用时域有限差分(FDTD)方法来模拟纳米柱阵列的电场增强。基于从制造的纳米结构获得的原子力显微镜(AFM)数据构建了一个新模型,并将其引入FDTD模型。我们通过测量罗丹明B溶液的拉曼光谱来展示增强行为。模拟和实验结果均表明,200纳米的纳米柱阵列具有最高的增强因子(EF)。此外,我们通过对不同浓度的罗丹明B溶液进行拉曼测量,确定了200纳米柱阵列的检测限。我们的200纳米纳米柱阵列的检测限为0.55微摩尔。最后,我们通过SERS基底结合主成分分析,鉴别了乙腈溶液中的1 ppm脱氧雪腐镰刀菌烯醇和1.25 ppm伏马菌素b1。这种用于制造SERS基底的通用方法为化学和生物应用中的材料表征提供了新机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a21a/9051602/7b365270a0a8/d0ra01909g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验