Suppr超能文献

通过聚合物夹层保护降低LiAlGe(PO)固体电解质/电极界面的界面电阻。

Reducing interfacial resistance of a LiAlGe(PO) solid electrolyte/electrode interface by polymer interlayer protection.

作者信息

Wang Leidanyang, Liu Da, Huang Tao, Geng Zhen, Yu Aishui

机构信息

Laboratory of Advanced Materials, Institute of New Energy, Fudan University Shanghai 200438 China

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University Shanghai 200438 China.

出版信息

RSC Adv. 2020 Mar 9;10(17):10038-10045. doi: 10.1039/d0ra00829j. eCollection 2020 Mar 6.

Abstract

High interfacial resistance of an electrode/electrolyte interface is the most challenging barrier for the expanding application of all-solid-state lithium batteries (ASSLBs). To address this challenge, poly(propylene carbonate)-based solid polymer electrolytes (PPC-SPEs) were introduced as interlayers combined with a LiAlGe(PO) (LAGP) solid state electrolyte (SSE), which successfully decreased the interfacial resistance of the SSE/electrolyte interface by suppressing the reduction reaction of Ge against the Li metal, as well as producing intimate contact between the cathode and electrolyte. This work provides a systematic analysis of the interfacial resistance of the cathode/SSE, Li/SSE and the polymer/LAGP interfaces. As a consequence, the interfacial resistance of the Li/SSE interface decreased about 35%, and the interfacial resistance of the cathode/SSE interface decreased from 3.2 × 10 to 543 Ω cm. With a PPC-LAGP-PPC sandwich structure composite electrolyte (PLSSCE), the all-solid-state LiFePO/Li cell showed a high capacity of 148.1 mA h g at 0.1C and a great cycle performance over 90 cycles.

摘要

电极/电解质界面的高界面电阻是全固态锂电池(ASSLBs)广泛应用面临的最具挑战性的障碍。为应对这一挑战,引入了基于聚碳酸丙烯酯的固体聚合物电解质(PPC-SPEs)作为中间层,并与LiAlGe(PO)(LAGP)固态电解质(SSE)相结合,这成功降低了SSE/电解质界面的界面电阻,其方式是抑制Ge与锂金属的还原反应,以及使阴极与电解质之间实现紧密接触。这项工作对阴极/SSE、Li/SSE和聚合物/LAGP界面的界面电阻进行了系统分析。结果,Li/SSE界面的界面电阻降低了约35%,阴极/SSE界面的界面电阻从3.2×10降至543Ω·cm²。采用PPC-LAGP-PPC夹层结构复合电解质(PLSSCE)时,全固态LiFePO₄/Li电池在0.1C下表现出148.1 mA h g⁻¹的高容量以及超过90次循环的出色循环性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c481/9050224/b0d5fde1945a/d0ra00829j-f1.jpg

相似文献

1
Reducing interfacial resistance of a LiAlGe(PO) solid electrolyte/electrode interface by polymer interlayer protection.
RSC Adv. 2020 Mar 9;10(17):10038-10045. doi: 10.1039/d0ra00829j. eCollection 2020 Mar 6.
2
Self-Sacrificed Interface-Based on the Flexible Composite Electrolyte for High-Performance All-Solid-State Lithium Batteries.
ACS Appl Mater Interfaces. 2019 Nov 13;11(45):42715-42721. doi: 10.1021/acsami.9b12112. Epub 2019 Nov 1.
3
Li Conduction in a Polymer/LiAlGe(PO) Solid Electrolyte and Li-Metal/Electrolyte Interface.
Molecules. 2023 Dec 10;28(24):8029. doi: 10.3390/molecules28248029.
4
Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries.
ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18610-18618. doi: 10.1021/acsami.8b01003. Epub 2018 May 23.
5
Constructing Effective Interfaces for LiAlGe(PO) Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2019 Mar 13;11(10):9911-9918. doi: 10.1021/acsami.8b20413. Epub 2019 Feb 27.
6
Melamine-Regulated Ceramic/Polymer Electrolyte Interface Promotes High Stability in Lithium-Metal Battery.
ACS Appl Mater Interfaces. 2022 Oct 26;14(42):47822-47830. doi: 10.1021/acsami.2c14940. Epub 2022 Oct 13.
7
Construct an Ultrathin Bismuth Buffer for Stable Solid-State Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2020 Mar 18;12(11):12793-12800. doi: 10.1021/acsami.9b21717. Epub 2020 Mar 4.
8
Rational Design of a Cross-Linked Composite Solid Electrolyte for Li-Metal Batteries.
ACS Appl Mater Interfaces. 2024 Jan 10;16(1):1535-1542. doi: 10.1021/acsami.3c15456. Epub 2023 Dec 22.
9
Construction of SnO buffer layer and analysis of its interface modification for Li and LiAlGe(PO) in solid-state batteries.
J Colloid Interface Sci. 2024 Jun;663:132-142. doi: 10.1016/j.jcis.2024.02.151. Epub 2024 Feb 21.
10
Constructing Stable Anodic Interphase for Quasi-Solid-State Lithium-Sulfur Batteries.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39335-39341. doi: 10.1021/acsami.0c11761. Epub 2020 Aug 24.

引用本文的文献

1
Electrolyte Development for Enhancing Sub-Zero Temperature Performance of Secondary Batteries.
Small. 2025 Sep;21(35):e2500982. doi: 10.1002/smll.202500982. Epub 2025 Jul 7.
2
External Pressure in Polymer-Based Lithium Metal Batteries: An Often-Neglected Criterion When Evaluating Cycling Performance?
ACS Appl Mater Interfaces. 2024 May 1;16(17):21932-21942. doi: 10.1021/acsami.4c02095. Epub 2024 Apr 22.
3
Design Strategies for Anodes and Interfaces Toward Practical Solid-State Li-Metal Batteries.
Adv Sci (Weinh). 2023 Sep;10(27):e2302263. doi: 10.1002/advs.202302263. Epub 2023 Aug 6.
4
Direct surface coating of high voltage LiCoO cathode with P(VDF-HFP) based gel polymer electrolyte.
RSC Adv. 2020 Jun 26;10(41):24533-24541. doi: 10.1039/d0ra04023a. eCollection 2020 Jun 24.
5
Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review.
Nanomaterials (Basel). 2020 Aug 15;10(8):1606. doi: 10.3390/nano10081606.

本文引用的文献

1
Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries.
Nanotechnology. 2020 Mar 27;31(13):132003. doi: 10.1088/1361-6528/ab5be7. Epub 2019 Nov 26.
2
Self-Sacrificed Interface-Based on the Flexible Composite Electrolyte for High-Performance All-Solid-State Lithium Batteries.
ACS Appl Mater Interfaces. 2019 Nov 13;11(45):42715-42721. doi: 10.1021/acsami.9b12112. Epub 2019 Nov 1.
3
Failure Mechanism and Interface Engineering for NASICON-Structured All-Solid-State Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2019 Jun 12;11(23):20895-20904. doi: 10.1021/acsami.9b05516. Epub 2019 May 30.
4
Constructing Effective Interfaces for LiAlGe(PO) Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2019 Mar 13;11(10):9911-9918. doi: 10.1021/acsami.8b20413. Epub 2019 Feb 27.
5
Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries.
ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18610-18618. doi: 10.1021/acsami.8b01003. Epub 2018 May 23.
6
3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7069-7078. doi: 10.1021/acsami.7b18123. Epub 2018 Feb 20.
7
Garnet Solid Electrolyte Protected Li-Metal Batteries.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):18809-18815. doi: 10.1021/acsami.7b03887. Epub 2017 May 22.
8
Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte.
J Am Chem Soc. 2016 Aug 3;138(30):9385-8. doi: 10.1021/jacs.6b05341. Epub 2016 Jul 22.
9
Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.
Chem Rev. 2016 Jan 13;116(1):140-62. doi: 10.1021/acs.chemrev.5b00563. Epub 2015 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验