Yoon Gabin, Kim Sewon, Kim Ju-Sik
Battery Material TU, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803, Republic of Korea.
Adv Sci (Weinh). 2023 Sep;10(27):e2302263. doi: 10.1002/advs.202302263. Epub 2023 Aug 6.
Solid-state Li-metal batteries (based on solid-state electrolytes) offer excellent safety and exhibit high potential to overcome the energy-density limitations of current Li-ion batteries, making them suitable candidates for the rapidly developing fields of electric vehicles and energy-storage systems. However, establishing close solid-solid contact is challenging, and Li-dendrite formation in solid-state electrolytes at high current densities causes fatal technical problems (due to high interfacial resistance and short-circuit failure). The Li metal/solid electrolyte interfacial properties significantly influence the kinetics of Li-metal batteries and short-circuit formation. This review discusses various strategies for introducing anode interlayers, from the perspective of reducing the interfacial resistance and preventing short-circuit formation. In addition, 3D anode structural-design strategies are discussed to alleviate the stress caused by volume changes during charging and discharging. This review highlights the importance of comprehensive anode/electrolyte interface control and anode design strategies that reduce the interfacial resistance, hinder short-circuit formation, and facilitate stress relief for developing Li-metal batteries with commercial-level performance.
固态锂金属电池(基于固态电解质)具有出色的安全性,并且在克服当前锂离子电池能量密度限制方面展现出巨大潜力,使其成为电动汽车和储能系统等快速发展领域的合适候选者。然而,建立紧密的固-固接触具有挑战性,并且在高电流密度下固态电解质中锂枝晶的形成会导致致命的技术问题(由于高界面电阻和短路故障)。锂金属/固体电解质界面性质显著影响锂金属电池的动力学和短路形成。本综述从降低界面电阻和防止短路形成的角度讨论了引入阳极中间层的各种策略。此外,还讨论了三维阳极结构设计策略,以减轻充放电过程中体积变化引起的应力。本综述强调了全面的阳极/电解质界面控制和阳极设计策略的重要性,这些策略可降低界面电阻、阻碍短路形成并促进应力释放,从而开发出具有商业级性能的锂金属电池。