Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712, United States.
J Am Chem Soc. 2016 Aug 3;138(30):9385-8. doi: 10.1021/jacs.6b05341. Epub 2016 Jul 22.
A cross-linked polymer containing pendant molecules attached to the polymer framework is shown to form flexible and low-cost membranes, to be a solid Li(+) electrolyte up to 270 °C, much higher than those based on poly(ethylene oxide), to be wetted by a metallic lithium anode, and to be not decomposed by the metallic anode if the anions of the salt are blocked by a ceramic electrolyte in a polymer/ceramic membrane/polymer sandwich electrolyte (PCPSE). In this sandwich architecture, the double-layer electric field at the Li/polymer interface is reduced due to the blocked salt anion transfer. The polymer layer adheres/wets the lithium metal surface and makes the Li-ion flux at the interface more homogeneous. This structure integrates the advantages of the ceramic and polymer. With the PCPSE, all-solid-state Li/LiFePO4 cells showed a notably high Coulombic efficiency of 99.8-100% over 640 cycles.
一种交联聚合物,其支链分子连接在聚合物骨架上,被证明可以形成灵活且低成本的膜,在高达 270°C 的温度下是一种固体 Li(+)电解质,远高于基于聚(环氧乙烷)的电解质,能够浸润金属锂阳极,如果盐的阴离子被聚合物/陶瓷电解质/聚合物夹层电解质(PCPSE)中的陶瓷电解质阻挡,则不会被金属阳极分解。在这种夹层结构中,由于阻挡了盐阴离子的迁移,Li/聚合物界面的双层电场减小。聚合物层附着/润湿锂金属表面,使界面处的锂离子通量更加均匀。这种结构结合了陶瓷和聚合物的优点。使用 PCPSE,全固态 Li/LiFePO4 电池在 640 次循环中表现出高达 99.8-100%的高库仑效率。