Zahra Taghazal, Ahmad Khuram Shahzad, Thomas Andrew Guy, Zequine Camila, Malik Mohammad Azad, Gupta Ram K
Department of Environmental Sciences, Fatima Jinnah Women University Rawalpindi Pakistan
Department of Materials, Photon Science Institute, Sir Henry Royce Institute, Alan Turing Building, The University of Manchester Oxford Road Manchester M13 9PL UK.
RSC Adv. 2020 Mar 12;10(17):9854-9867. doi: 10.1039/c9ra10472k. eCollection 2020 Mar 6.
To deal with fossil fuel depletion and the rise in global temperatures caused by fossil fuels, cheap and abundant materials are required, in order to fulfill energy demand by developing high-performance fuel cells and electrocatalysts. In this work, a natural organic agent has been used to synthesize nano-structured ZnO/MnO with high surface area and enhanced electrocatalytic performance. Upon pre-annealing treatment, mixed metal oxide precipitates are formed due to the complex formation between a metal oxide and organic extract. The thermally annealed mixed oxide ZnO/MnO was characterized by XRD diffractometer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Gas chromatography-mass spectrometry (GC-MS) identified methyldecylamine as a major stabilizing agent of the synthesized nanomaterial. Using a Tauc plot, the calculated band energy for the synthesized ZnO/MnO mixed metal oxide was 1.65 eV. Moreover, we have demonstrated the effects of incorporated organic compounds on the surface chemistry, morphology and electrochemical behavior of ZnO/MnO. The phyto-functionalized ZnO/MnO was deposited on Ni-foam for electrocatalytic studies. The fabricated electrode revealed good performance with low over-potential and Tafel slope, suggesting it to be suitable as a potential catalyst for water splitting application, in particular for the oxygen evolution reaction (OER). The overall findings of the current study provide a cost-effective and efficient organic template for functionalization and sustainable fabrication of ZnO/MnO nanomaterial for application as an electrocatalyst.
为应对化石燃料枯竭以及化石燃料导致的全球气温上升问题,需要廉价且丰富的材料,以便通过开发高性能燃料电池和电催化剂来满足能源需求。在这项工作中,一种天然有机试剂被用于合成具有高表面积和增强电催化性能的纳米结构ZnO/MnO。经过预退火处理后,由于金属氧化物与有机提取物之间形成络合物,形成了混合金属氧化物沉淀。对热退火后的混合氧化物ZnO/MnO进行了X射线衍射仪、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和能量色散X射线光谱(EDX)表征。气相色谱-质谱联用(GC-MS)确定甲基癸胺为合成纳米材料的主要稳定剂。使用Tauc图计算得出合成的ZnO/MnO混合金属氧化物的能带能量为1.65 eV。此外,我们展示了掺入的有机化合物对ZnO/MnO的表面化学、形态和电化学行为的影响。将植物功能化的ZnO/MnO沉积在泡沫镍上进行电催化研究。制备的电极显示出良好的性能,具有低过电位和塔菲尔斜率,表明它适合作为水分解应用的潜在催化剂,特别是用于析氧反应(OER)。当前研究的总体结果为ZnO/MnO纳米材料作为电催化剂的功能化和可持续制备提供了一种经济高效的有机模板。