Suppr超能文献

使用机器人髋关节外骨骼进行连续运动模式分类

Continuous locomotion mode classification using a robotic hip exoskeleton.

作者信息

Kang Inseung, Molinaro Dean D, Choi Gayeon, Young Aaron J

机构信息

I. Kang, D. D. Molinaro, G. Choi, and A. J. Young are with the School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

D. D. Molinaro and A. J. Young are with the Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA.

出版信息

Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2020 Nov-Dec;2020:376-381. doi: 10.1109/biorob49111.2020.9224359. Epub 2020 Oct 15.

Abstract

Human augmentation through robotic exoskeleton technology can enhance the user's mobility for a wide range of ambulation tasks. This is done by providing assistance that is in line with the user's movement during different locomotion modes (e.g., ramps and stairs). Several machine learning techniques have been applied to classify such tasks on lower limb prostheses, but these strategies have not been applied extensively to exoskeleton systems which often rely on similar control inputs. Additionally, conventional methods often identify modes at a discrete time during the gait cycle which can delay the corresponding assistance to the user and potentially reduce overall exoskeleton benefit. We developed a gait phase-based Bayesian classifier that can classify five ambulation modes continuously throughout the gait cycle using only mechanical sensors on the device. From our five able-bodied subject experiment with a robotic hip exoskeleton, we found that implementing multiple models within the gait cycle can reduce the classification error rate by 35% compared to using a single model ( 0.05). Furthermore, we found that utilizing bilateral sensor information can reduce the error by 43% compared to using a unilateral information ( 0.05). Our study findings provide valuable information for future exoskeleton developers to utilize different on-board mechanical sensors to enhance mode classification for a faster update rate in the controller and provide more natural and seamless exoskeleton assistance between locomotion modes.

摘要

通过机器人外骨骼技术实现人体增强,可以提高用户在各种行走任务中的移动能力。这是通过在不同的运动模式(如斜坡和楼梯)下提供与用户运动相匹配的辅助来实现的。几种机器学习技术已被应用于下肢假肢的此类任务分类,但这些策略尚未广泛应用于通常依赖类似控制输入的外骨骼系统。此外,传统方法通常在步态周期的离散时间识别模式,这可能会延迟对用户的相应辅助,并可能降低外骨骼的整体效益。我们开发了一种基于步态阶段的贝叶斯分类器,该分类器仅使用设备上的机械传感器就能在整个步态周期中连续对五种行走模式进行分类。通过对五名健全受试者使用机器人髋关节外骨骼进行的实验,我们发现与使用单一模型相比,在步态周期内实施多个模型可将分类错误率降低35%(P<0.05)。此外,我们发现与使用单侧信息相比,利用双侧传感器信息可将误差降低43%(P<0.05)。我们的研究结果为未来的外骨骼开发者提供了有价值的信息,以便他们利用不同的机载机械传感器来增强模式分类,从而在控制器中实现更快的更新速率,并在运动模式之间提供更自然、无缝的外骨骼辅助。

相似文献

1
Continuous locomotion mode classification using a robotic hip exoskeleton.使用机器人髋关节外骨骼进行连续运动模式分类
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2020 Nov-Dec;2020:376-381. doi: 10.1109/biorob49111.2020.9224359. Epub 2020 Oct 15.
5
Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.下肢外骨骼对神经活动调节和步态分类的影响。
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2988-3003. doi: 10.1109/TNSRE.2023.3294435. Epub 2023 Jul 28.
6
Biological Hip Torque Estimation using a Robotic Hip Exoskeleton.使用机器人髋关节外骨骼进行生物髋关节扭矩估计。
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2020 Nov-Dec;2020:791-796. doi: 10.1109/biorob49111.2020.9224334. Epub 2020 Oct 15.

本文引用的文献

9
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.下肢机器人外骨骼的现状与未来发展方向
IEEE Trans Neural Syst Rehabil Eng. 2017 Feb;25(2):171-182. doi: 10.1109/TNSRE.2016.2521160. Epub 2016 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验