Suppr超能文献

通过图论方法对细胞代谢中的能量耦联机制进行网络表示和分析。

Network representation and analysis of energy coupling mechanisms in cellular metabolism by a graph-theoretical approach.

机构信息

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

出版信息

Theory Biosci. 2022 Sep;141(3):249-260. doi: 10.1007/s12064-022-00370-0. Epub 2022 May 2.

Abstract

Mechanisms coupling the chemical reactions of oxidation and ATP synthesis in cellular metabolism by the fundamental biological process of oxidative phosphorylation (OX PHOS) in mitochondria provide > 90% of the energy requirements in living organisms. Mathematical graph theory methods have been extensively used to characterize various metabolic, regulatory, and disease networks in biology. However, networks of energy coupling mechanisms in OX PHOS have not been represented and analyzed previously by these approaches. Here, the problem of biological energy coupling is translated into a graph-theoretical framework, and all possible coupling schemes between oxidation and ATP synthesis are represented as graphs connecting these processes by various intermediates or states. The problem is shown to be transformed into the hard problem of finding a Hamiltonian tour in the networks of possible constituent mechanisms, given the constraints of a cyclical nature of operation of enzymes and biological molecular machines. Accessible mathematical proofs of three theorems that guarantee sufficient conditions for the existence of a Hamiltonian cycle in simple graphs are provided. The results of the general theorems are applied to the set of possible coupling mechanisms in OX PHOS and shown to (1) unequivocally differentiate between the major theories and mechanisms of energy coupling, (2) greatly reduce the possibilities for detailed consideration, and (3) deduce the biologically selected mechanism using additional constraints from the cumulative experimental record. Finally, an algorithm is constructed to implement the graph-theoretical procedure. In summary, the enormous power and generality of mathematical theorems and approaches in graph theory are shown to help solve a fundamental problem in biology.

摘要

细胞代谢中的基本生物学过程氧化磷酸化(OX PHOS)将氧化反应和 ATP 合成的化学反应耦联在一起,为生物体提供了超过 90%的能量需求。数学图论方法已被广泛用于描述生物学中的各种代谢、调节和疾病网络。然而,以前这些方法并没有表示和分析 OX PHOS 中能量耦联机制的网络。在这里,生物能量耦联的问题被转化为图论框架,并且通过各种中间产物或状态将氧化和 ATP 合成之间的所有可能的耦联方案表示为连接这些过程的图。该问题被证明转化为在给定酶和生物分子机器的循环操作的约束条件下,在可能的组成机制的网络中找到哈密顿回路的难题。为简单图中存在哈密顿回路的充分条件提供了三个定理的可访问数学证明。一般定理的结果应用于 OX PHOS 中可能的耦联机制集,并证明了(1)明确区分能量耦联的主要理论和机制,(2)大大减少了详细考虑的可能性,以及(3)使用来自累积实验记录的附加约束来推断生物选择的机制。最后,构建了一个算法来实现图论过程。总之,图论中的数学定理和方法的巨大威力和通用性被证明有助于解决生物学中的一个基本问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验