Suppr超能文献

F₀F₁ - ATP合酶催化ATP合成的扭转机制中的对称性破缺与错配:数论证明及其化学和生物学意义

Symmetry breaking and mismatch in the torsional mechanism of ATP synthesis by FF-ATP synthase: mathematical number theory proof and its chemical and biological implications.

作者信息

Nath Sunil

机构信息

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

出版信息

Theory Biosci. 2025 Feb;144(1):81-93. doi: 10.1007/s12064-024-00434-3. Epub 2024 Dec 22.

Abstract

Can mathematical proofs be employed for the solution of fundamental molecular-level problems in biology? Recently, I mathematically tackled complex mechanistic problems arising during the synthesis of the universal biological currency, adenosine triphosphate (ATP) by the FF-ATP synthase, nature's smallest rotary molecular motor, using graph-theoretical and combinatorial approaches for the membrane-bound F and water-soluble F domains of this fascinating molecule (see Nath in Theory Biosci 141:249‒260, 2022 and Theory Biosci 143:217‒227, 2024). In the third part of this trilogy, I investigate another critical aspect of the molecular mechanism-that of coupling between the F and F domains of the ATP synthase mediated by the central γ-subunit of nanometer diameter. According to Nath's torsional mechanism of energy transduction and ATP synthesis the γ-subunit twists during ATP synthesis and the release of stored torsional energy in the central γ-stalk causes conformational changes in the catalytic sites that lead to ATP synthesis, with 1 ATP molecule synthesized per discrete 120° rotation. The twisted γ-subunit breaks the symmetry of the molecule, and its residual torsional strain is shown to readily accommodate any symmetry mismatch existing between F and F. A mathematical number theory proof is developed to quantify the extent of symmetry mismatch at any angular position during rotation and derive the conditions for the regaining of symmetry at the end of a 360° rotation. The many chemical and biological implications of the mechanism and the mathematical proof are discussed in detail. Finally, suggestions for further mathematical development of the subject based on ideas from symmetry and group theory have been made. In sum, the answer to the question posed at the beginning of the Abstract is a resounding YES. There exists new, relatively unexplored territory at the interface of mathematics and molecular biology, especially at the level of molecular mechanism. It is hoped that more mathematicians and scientists interested in interdisciplinary work are encouraged to include in their research program approaches of this type-a mathematical proofs-inspired molecular biology-that have the power to lead to new vistas. Such molecular-scale mechanistic problems in biology have proved extraordinarily difficult to solve definitively using conventional experimental, theoretical, and computational approaches.

摘要

数学证明能否用于解决生物学中基本的分子水平问题?最近,我运用数学方法,通过图论和组合方法,研究了自然界最小的旋转分子马达——FF-ATP合酶合成通用生物货币三磷酸腺苷(ATP)过程中出现的复杂机制问题,该分子马达由膜结合的F和水溶性F结构域组成(见Nath于《理论生物科学》2022年第141卷第249 - 260页以及2024年第143卷第217 - 227页发表的文章)。在这个三部曲的第三部分,我研究了分子机制的另一个关键方面——由纳米直径的中央γ亚基介导的ATP合酶F和F结构域之间的偶联。根据Nath的能量转导和ATP合成的扭转机制,γ亚基在ATP合成过程中发生扭转,中央γ柄中储存的扭转能量的释放会导致催化位点的构象变化,从而引发ATP合成,每120°离散旋转合成1个ATP分子。扭曲的γ亚基打破了分子的对称性,并且其残余扭转应变被证明能够轻松适应F和F之间存在的任何对称性不匹配。我们开发了一个数学数论证明,以量化旋转过程中任意角度位置的对称性不匹配程度,并推导360°旋转结束时恢复对称性的条件。详细讨论了该机制和数学证明的许多化学和生物学意义。最后,基于对称性和群论的思想,对该主题进一步的数学发展提出了建议。总之,摘要开头提出的问题的答案是响亮的肯定。在数学与分子生物学的交叉领域,尤其是在分子机制层面,存在着新的、相对未被探索的领域。希望鼓励更多对跨学科工作感兴趣的数学家和科学家将这种类型的方法——受数学证明启发的分子生物学——纳入他们的研究计划,这种方法有能力带来新的前景。事实证明,使用传统的实验、理论和计算方法,很难彻底解决生物学中这种分子尺度的机制问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验