Suppr超能文献

Weak Monotonicity With Trend Analysis for Unsupervised Feature Evaluation.

作者信息

Lu Lei, Tan Ying, Oetomo Denny, Mareels Iven, Clifton David A

出版信息

IEEE Trans Cybern. 2023 Nov;53(11):6883-6895. doi: 10.1109/TCYB.2022.3166766. Epub 2023 Oct 17.

Abstract

Performance in an engineering system tends to degrade over time due to a variety of wearing or ageing processes. In supervisory controlled processes there are typically many signals being monitored that may help to characterize performance degradation. It is preferred to select the least amount of information to obtain high quality of predictive analysis from a large amount of collected data, in which labeling the data is not always feasible. To this end a novel unsupervised feature selection method, robust with respect to significant measurement disturbances, is proposed using the notion of "weak monotonicity" (WM). The robustness of this notion makes it very attractive to identify the common trend in the presence of measurement noises and population variation from the collected data. Based on WM, a novel suitability indicator is proposed to evaluate the performance of each feature. This new indicator is then used to select the key features that contribute to the WM of a family of processes when noises and variations among processes exist. In order to evaluate the performance of the proposed framework of the WM and suitability, a comparative study with other nine state-of-the-arts unsupervised feature evaluation and selection methods is carried out on well-known benchmark datasets. The results show a promising performance of the proposed framework on unsupervised feature evaluation in the presence of measurement noises and population variations.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验