Suppr超能文献

用于非监督式医疗保健监测的自动心电图噪声检测和分类系统。

Automated ECG Noise Detection and Classification System for Unsupervised Healthcare Monitoring.

出版信息

IEEE J Biomed Health Inform. 2018 May;22(3):722-732. doi: 10.1109/JBHI.2017.2686436. Epub 2017 Mar 22.

Abstract

OBJECTIVE

Automatic detection and classification of noises can play a vital role in the development of robust unsupervised electrocardiogram (ECG) analysis systems. This paper proposes a novel unified framework for automatic detection, localization, and classification of single and combined ECG noises.

METHODS

The proposed framework consists of the modified ensemble empirical mode decomposition (CEEMD), the short-term temporal feature extraction, and the decision-rule-based noise detection and classification. In the proposed framework, ECG signals are first decomposed using the modified CEEMD algorithm for discriminating the ECG components from the noises and artifacts. Then, the short-term temporal features such as maximum absolute amplitude, number of zerocrossings, and local maximum peak amplitude of the autocorelation function are computed from the extracted high-frequency and low-frequency signals. Finally, a decision rule-based algorithm is presented for detecting the presence of noises and classifying the processed ECG signals into six signal groups: noise-free ECG, ECG+BW, ECG+MA, ECG+PLI, ECG+BW+PLI, and ECG+BW+MA.

RESULTS

The proposed framework is rigorously evaluated on five benchmark ECG databases and the real-time ECG signals. The proposed framework achieves an average sensitivity of 99.12%, specificity of 98.56%, and overall accuracy of 98.90% in detecting the presence of noises. Classification results show that the framework achieves an average sensitivity, positive predictivity, and classification accuracy of 98.93%, 98.39%, and 97.38%, respectively.

CONCLUSION

The proposed framework not only achieves better noise detection and classification rates than the current state-of-the-art methods but also accurately localizes short bursts of noises with low endpoint delineation errors.

SIGNIFICANCE

Extensive studies on benchmark databases demonstrate that the proposed framework is more suitable for reducing false alarm rates and selecting appropriate noise-specific denoising techniques in automated ECG analysis applications.

摘要

目的

噪声的自动检测和分类在开发稳健的无监督心电图(ECG)分析系统中起着至关重要的作用。本文提出了一种新颖的统一框架,用于自动检测、定位和分类单一和组合的 ECG 噪声。

方法

所提出的框架由改进的集成经验模态分解(CEEMD)、短期时间特征提取和基于决策规则的噪声检测和分类组成。在该框架中,首先使用改进的 CEEMD 算法对 ECG 信号进行分解,以区分 ECG 分量和噪声和伪影。然后,从提取的高频和低频信号中计算出短期时间特征,如最大绝对幅度、过零点数和自相关函数的局部最大峰值幅度。最后,提出了一种基于决策规则的算法,用于检测噪声的存在,并将处理后的 ECG 信号分类为六个信号组:无噪声 ECG、ECG+BW、ECG+MA、ECG+PLI、ECG+BW+PLI 和 ECG+BW+MA。

结果

该框架在五个基准 ECG 数据库和实时 ECG 信号上进行了严格评估。该框架在检测噪声存在方面的平均灵敏度为 99.12%,特异性为 98.56%,整体准确性为 98.90%。分类结果表明,该框架的平均灵敏度、阳性预测值和分类准确率分别为 98.93%、98.39%和 97.38%。

结论

所提出的框架不仅在噪声检测和分类率方面优于当前的最先进方法,而且还能准确地定位具有低端点描绘误差的短突发噪声。

意义

对基准数据库的广泛研究表明,该框架更适合于降低自动 ECG 分析应用中的误报率并选择适当的噪声特定去噪技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验