Suppr超能文献

基于最小绝对值收缩和选择算子回归的肾上腺皮质癌铁死亡相关分子预后模型。

Ferroptosis-based molecular prognostic model for adrenocortical carcinoma based on least absolute shrinkage and selection operator regression.

机构信息

Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Lifestyle Supporting Technologies Group, Technical University of Madrid, Madrid, Spain.

出版信息

J Clin Lab Anal. 2022 Jun;36(6):e24465. doi: 10.1002/jcla.24465. Epub 2022 May 2.

Abstract

BACKGROUND

This study aimed to find ferroptosis-related genes linked to clinical outcomes of adrenocortical carcinoma (ACC) and assess the prognostic value of the model.

METHODS

We downloaded the mRNA sequencing data and patient clinical data of 78 ACC patients from the TCGA data portal. Candidate ferroptosis-related genes were screened by univariate regression analysis, machine-learning least absolute shrinkage, and selection operator (LASSO). A ferroptosis-related gene-based prognostic model was constructed. The effectiveness of the prediction model was accessed by KM and ROC analysis. External validation was done using the GSE19750 cohort. A nomogram was generated. The prognostic accuracy was measured and compared with conventional staging systems (TNM stage). Functional analysis was conducted to identify biological characterization of survival-associated ferroptosis-related genes.

RESULTS

Seventy genes were identified as survival-associated ferroptosis-related genes. The prognostic model was constructed with 17 ferroptosis-related genes including STMN1, RRM2, HELLS, FANCD2, AURKA, GABARAPL2, SLC7A11, KRAS, ACSL4, MAPK3, HMGB1, CXCL2, ATG7, DDIT4, NOX1, PLIN4, and STEAP3. A RiskScore was calculated for each patient. KM curve indicated good prognostic performance. The AUC of the ROC curve for predicting 1-, 3-, and 5- year(s) survival time was 0.975, 0.913, and 0.915 respectively. The nomogram prognostic evaluation model showed better predictive ability than conventional staging systems.

CONCLUSION

We constructed a prognosis model of ACC based on ferroptosis-related genes with better predictive value than the conventional staging system. These efforts provided candidate targets for revealing the molecular basis of ACC, as well as novel targets for drug development.

摘要

背景

本研究旨在寻找与肾上腺皮质癌(ACC)临床结局相关的铁死亡相关基因,并评估该模型的预后价值。

方法

我们从 TCGA 数据门户下载了 78 名 ACC 患者的 mRNA 测序数据和患者临床数据。通过单因素回归分析、机器学习最小绝对收缩和选择算子(LASSO)筛选候选铁死亡相关基因。构建基于铁死亡相关基因的预后模型。通过 KM 和 ROC 分析评估预测模型的有效性。使用 GSE19750 队列进行外部验证。生成列线图。测量并比较预测准确性与传统分期系统(TNM 分期)。进行功能分析以确定与生存相关的铁死亡相关基因的生物学特征。

结果

确定了 70 个与生存相关的铁死亡相关基因。该预后模型构建了 17 个铁死亡相关基因,包括 STMN1、RRM2、HELLS、FANCD2、AURKA、GABARAPL2、SLC7A11、KRAS、ACSL4、MAPK3、HMGB1、CXCL2、ATG7、DDIT4、NOX1、PLIN4 和 STEAP3。为每位患者计算了 RiskScore。KM 曲线表明预后性能良好。预测 1、3 和 5 年生存率的 ROC 曲线的 AUC 分别为 0.975、0.913 和 0.915。列线图预后评估模型比传统分期系统具有更好的预测能力。

结论

我们构建了基于铁死亡相关基因的 ACC 预后模型,其预测价值优于传统分期系统。这些努力为揭示 ACC 的分子基础提供了候选靶点,并为药物开发提供了新的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d8/9169198/ddcba378129f/JCLA-36-e24465-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验