Suppr超能文献

生物标志物在横纹肌溶解症诊断中的应用:前瞻性多中心多国研究方案,涉及胫骨骨折患者。

BioFACTS: biomarkers of rhabdomyolysis in the diagnosis of acute compartment syndrome - protocol for a prospective multinational, multicentre study involving patients with tibial fractures.

机构信息

Department of Orthopaedics and Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University Hospital, Linkoping, Sweden.

Department of Orthopaedics and Traumatology, Helsinki University Hospital, and, University of Helsinki, Helsinki, Finland.

出版信息

BMJ Open. 2022 May 2;12(5):e059918. doi: 10.1136/bmjopen-2021-059918.

Abstract

INTRODUCTION

The ischaemic pain of acute compartment syndrome (ACS) can be difficult to discriminate from the pain linked to an associated fracture. Lacking objective measures, the decision to perform fasciotomy is based on clinical findings and performed at a low level of suspicion. Biomarkers of muscle cell damage may help to identify and monitor patients at risk, similar to current routines for patients with acute myocardial infarction. This study will test the hypothesis that biomarkers of muscle cell damage can predict ACS in patients with tibial fractures.

METHODS AND ANALYSIS

Patients aged 15-65 years who have suffered a tibial fracture will be included. Plasma (P)-myoglobin and P-creatine phosphokinase will be analysed at 6-hourly intervals after admission to the hospital (for 48 hours) and-if applicable-after surgical fixation or fasciotomy (for 24 hours). In addition, if ACS is suspected at any other point in time, blood samples will be collected at 6-hourly intervals. An independent expert panel will assess the study data and will classify those patients who had undergone fasciotomy into those with ACS and those without ACS. All primary comparisons will be performed between fracture patients with and without ACS. The area under the receiver operator characteristics curves will be used to identify the success of the biomarkers in discriminating between fracture patients who develop ACS and those who do not. Logistic regression analyses will be used to assess the discriminative abilities of the biomarkers to predict ACS corrected for prespecified covariates.

ETHICS AND DISSEMINATION

The study has been approved by the Regional Ethical Review Boards in Linköping (2017/514-31) and Helsinki/Uusimaa (HUS/2500/2000). The BioFACTS study will be reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology recommendations.

TRIAL REGISTRATION NUMBER

NCT04674592.

摘要

简介

急性骨筋膜室综合征(ACS)的缺血性疼痛很难与相关骨折引起的疼痛区分开来。由于缺乏客观指标,筋膜切开术的决策基于临床发现,并在低怀疑水平下进行。肌肉细胞损伤的生物标志物可能有助于识别和监测有风险的患者,类似于当前急性心肌梗死患者的常规治疗。本研究将检验这样一个假设,即肌肉细胞损伤的生物标志物可以预测胫骨骨折患者的 ACS。

方法和分析

将纳入年龄在 15-65 岁之间、遭受胫骨骨折的患者。在入院后(48 小时内),以及在(如果适用)手术固定或筋膜切开术后(24 小时内),每 6 小时分析一次血浆(P)肌红蛋白和 P-肌酸磷酸激酶。此外,如果在任何其他时间怀疑 ACS,将每 6 小时采集一次血样。一个独立的专家小组将评估研究数据,并将接受筋膜切开术的患者分为 ACS 患者和非 ACS 患者。所有主要比较将在骨折患者中进行,这些患者患有 ACS 和那些没有 ACS 的患者。将使用受试者工作特征曲线下的面积来确定生物标志物在区分发生 ACS 和未发生 ACS 的骨折患者方面的成功程度。将使用逻辑回归分析来评估生物标志物预测 ACS 的能力,并对预定协变量进行校正。

伦理和传播

该研究已获得林雪平(2017/514-31)和赫尔辛基/乌西玛(HUS/2500/2000)地区伦理审查委员会的批准。BioFACTS 研究将按照《加强观察性研究的报告流行病学建议》进行报告。

试验注册号

NCT04674592。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验