MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
Research Center for Materials Genome Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.
Phys Chem Chem Phys. 2022 May 11;24(18):11370-11381. doi: 10.1039/d2cp00168c.
Biomineralization is a vital physiological process in living organisms, hence elucidating its mechanism is crucial in the optimization of controllable biomaterial preparation with hydroxyapatite and collagen, which could provide information for the design of innovative biomaterials. However, the mechanisms by which minerals and collagen interact in various ionic environments are unclear. Here, we applied molecular dynamics and free energy simulations to clarify type I collagen-mediated HAP prenucleation and simulated the physiological environment using different phosphate and carbonate protonation states. Calcium phosphate mineral formation on the type I collagen surface drastically differed among various HPO, HPO, PO, CO, and HCO compositions. Our simulations indicated that the presence of HPO in the solution phase is critical to regulate the apatite nucleation, whereas the presence of HPO may be inhibitory. The inclusion of CO in the solution might promote calcium phosphate cluster formation. In contrast, apatite cluster size may be regulated by changing the anion concentration ratios, including PO/HPO and PO/CO. Our free energy simulations attributed these phenomena to relative differences in binding thermostability and ion association kinetics. Our simulations provide a theoretical approach toward the effective control of collagen mineralization and the preparation of novel biomaterials.
生物矿化是生物体内一种重要的生理过程,因此阐明其机制对于优化可控的含羟基磷灰石和胶原蛋白的生物材料的制备至关重要,这可为设计创新型生物材料提供信息。然而,在不同的离子环境中矿物质和胶原蛋白相互作用的机制尚不清楚。在这里,我们应用分子动力学和自由能模拟来阐明 I 型胶原蛋白介导的 HAP 成核前体,并模拟了使用不同的磷酸盐和碳酸盐质子化状态的生理环境。I 型胶原蛋白表面上钙磷矿物的形成在各种 HPO、HPO、PO、CO 和 HCO 组成之间有很大的不同。我们的模拟表明,溶液相中 HPO 的存在对于调节磷灰石成核至关重要,而 HPO 的存在可能是抑制性的。溶液中 CO 的存在可能会促进磷酸钙簇的形成。相比之下,通过改变阴离子浓度比(包括 PO/HPO 和 PO/CO)可以调节磷灰石簇的大小。我们的自由能模拟将这些现象归因于结合热稳定性和离子缔合动力学的相对差异。我们的模拟为有效控制胶原蛋白矿化和制备新型生物材料提供了一种理论方法。