Xu Minghao, Wang Hang, Ni Bingbing
IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1727-1741. doi: 10.1109/TPAMI.2022.3172372. Epub 2024 Feb 6.
Multi-Source Domain Adaptation (MSDA) focuses on transferring the knowledge from multiple source domains to the target domain, which is a more practical and challenging problem compared to the conventional single-source domain adaptation. In this problem, it is essential to model multiple source domains and target domain jointly, and an effective domain combination scheme is also highly required. The graphical structure among different domains is useful to tackle these challenges, in which the interdependency among various instances/categories can be effectively modeled. In this work, we propose two types of graphical models, i.e. Conditional Random Field for MSDA (CRF-MSDA) and Markov Random Field for MSDA (MRF-MSDA), for cross-domain joint modeling and learnable domain combination. In a nutshell, given an observation set composed of a query sample and the semantic prototypes (i.e. representative category embeddings) on various domains, the CRF-MSDA model seeks to learn the joint distribution of labels conditioned on the observations. We attain this goal by constructing a relational graph over all observations and conducting local message passing on it. By comparison, MRF-MSDA aims to model the joint distribution of observations over different Markov networks via an energy-based formulation, and it can naturally perform label prediction by summing the joint likelihoods over several specific networks. Compared to the CRF-MSDA counterpart, the MRF-MSDA model is more expressive and possesses lower computational cost. We evaluate these two models on four standard benchmark data sets of MSDA with distinct domain shift and data complexity, and both models achieve superior performance over existing methods on all benchmarks. In addition, the analytical studies illustrate the effect of different model components and provide insights about how the cross-domain joint modeling performs.
多源域适应(MSDA)专注于将知识从多个源域转移到目标域,与传统的单源域适应相比,这是一个更实际且更具挑战性的问题。在这个问题中,对多个源域和目标域进行联合建模至关重要,同时也非常需要一种有效的域组合方案。不同域之间的图形结构有助于应对这些挑战,其中可以有效地对各种实例/类别之间的相互依赖性进行建模。在这项工作中,我们提出了两种类型的图形模型,即用于MSDA的条件随机场(CRF-MSDA)和用于MSDA的马尔可夫随机场(MRF-MSDA),用于跨域联合建模和可学习的域组合。简而言之,给定一个由查询样本和各个域上的语义原型(即代表性类别嵌入)组成的观察集,CRF-MSDA模型旨在学习基于观察的标签联合分布。我们通过在所有观察上构建关系图并在其上进行局部消息传递来实现这一目标。相比之下,MRF-MSDA旨在通过基于能量的公式对不同马尔可夫网络上的观察联合分布进行建模,并且它可以通过对几个特定网络上的联合似然求和来自然地执行标签预测。与CRF-MSDA对应模型相比,MRF-MSDA模型更具表现力且计算成本更低。我们在具有不同域偏移和数据复杂性的四个MSDA标准基准数据集上评估这两个模型,并且这两个模型在所有基准上均比现有方法取得了更好的性能。此外,分析研究阐明了不同模型组件的作用,并提供了有关跨域联合建模如何执行的见解。