Lifelo Zita, Ding Jianguo, Ning Huansheng, Dhelim Sahraoui
School of Computer and Communications Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Department of Computer Science, Blekinge Institute of Technology, 371 79, Karlskrona, Sweden.
Sci Rep. 2025 Jul 14;15(1):25344. doi: 10.1038/s41598-025-10917-y.
Deep learning techniques have demonstrated significant promise for detecting Major Depressive Disorder (MDD) from textual data but they still face limitations in real-world scenarios. Specifically, given the limited data availability, some efforts have resorted to aggregating data from different domains to expand the data volume. However, these approaches face critical challenges, including data privacy, domain gaps, class imbalance, and uncertainty arising from both the data and the model. To overcome these challenges, we propose an Uncertainty-Aware Domain Incremental Learning framework for Cross-Domain Depression Detection (UDIL-DD), integrating Uncertainty-guided Adaptive Class Threshold Learning (UACTL) and Data-Free Domain Alignment (DFDA). Specifically, our UACTL module measures the discrepancy between predictions across sequential domains and learns adaptive thresholds tailored to each class, incorporating predictive uncertainty to enhance robustness. Subsequently, the DFDA module leverages domain-similar samples identified by UACTL to approximate historical feature distributions without accessing previous domain data, effectively addressing catastrophic forgetting. To validate the effectiveness of the proposed method, we conduct extensive experiments on four benchmark MDD datasets-CMDC, DIAC-WoZ, MODMA and EATD confirming the effectiveness of our method's potential for reliable depression detection in real-world clinical scenarios.
深度学习技术已在从文本数据中检测重度抑郁症(MDD)方面展现出巨大潜力,但在现实场景中仍面临局限性。具体而言,鉴于数据可用性有限,一些研究致力于整合来自不同领域的数据以扩大数据量。然而,这些方法面临诸多关键挑战,包括数据隐私、领域差距、类别不平衡以及数据和模型所产生的不确定性。为克服这些挑战,我们提出了一种用于跨领域抑郁症检测的不确定性感知领域增量学习框架(UDIL-DD),该框架集成了不确定性引导的自适应类别阈值学习(UACTL)和无数据领域对齐(DFDA)。具体来说,我们的UACTL模块测量跨连续领域预测之间的差异,并学习针对每个类别量身定制的自适应阈值,纳入预测不确定性以增强鲁棒性。随后,DFDA模块利用UACTL识别的领域相似样本,在不访问先前领域数据的情况下近似历史特征分布,有效解决灾难性遗忘问题。为验证所提方法的有效性,我们在四个基准MDD数据集——CMDC、DIAC-WoZ、MODMA和EATD上进行了广泛实验,证实了我们的方法在现实临床场景中进行可靠抑郁症检测的潜力。