Suppr超能文献

P3-MSDA:用于动态视觉目标检测的多源域自适应网络

P3-MSDA: Multi-Source Domain Adaptation Network for Dynamic Visual Target Detection.

作者信息

Song Xiyu, Zeng Ying, Tong Li, Shu Jun, Bao Guangcheng, Yan Bin

机构信息

Henan Key Laboratory of Imaging and Intelligent Processing, Chinese People's Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, China.

Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Hum Neurosci. 2021 Aug 9;15:685173. doi: 10.3389/fnhum.2021.685173. eCollection 2021.

Abstract

Single-trial electroencephalogram detection has been widely applied in brain-computer interface (BCI) systems. Moreover, an individual generalized model is significant for applying the dynamic visual target detection BCI system in real life because of the time jitter of the detection latency, the dynamics and complexity of visual background. Hence, we developed an unsupervised multi-source domain adaptation network (P3-MSDA) for dynamic visual target detection. In this network, a P3 map-clustering method was proposed for source domain selection. The adversarial domain adaptation was conducted for domain alignment to eliminate individual differences, and prediction probabilities were ranked and returned to guide the input of target samples for imbalanced data classification. The results showed that individuals with a strong P3 map selected by the proposed P3 map-clustering method perform best on the source domain. Compared with existing schemes, the proposed P3-MSDA network achieved the highest classification accuracy and F1 score using five labeled individuals with a strong P3 map as the source domain. These findings can have a significant meaning in building an individual generalized model for dynamic visual target detection.

摘要

单次试验脑电图检测已在脑机接口(BCI)系统中得到广泛应用。此外,由于检测潜伏期的时间抖动、视觉背景的动态性和复杂性,个体通用模型对于在现实生活中应用动态视觉目标检测BCI系统具有重要意义。因此,我们开发了一种用于动态视觉目标检测的无监督多源域自适应网络(P3-MSDA)。在该网络中,提出了一种P3图谱聚类方法用于源域选择。进行对抗域自适应以实现域对齐,消除个体差异,并对预测概率进行排序和返回,以指导不平衡数据分类中目标样本的输入。结果表明,通过所提出的P3图谱聚类方法选择的具有强P3图谱的个体在源域上表现最佳。与现有方案相比,所提出的P3-MSDA网络以五个具有强P3图谱的标记个体作为源域,实现了最高的分类准确率和F1分数。这些发现对于构建动态视觉目标检测的个体通用模型具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d3/8381600/3fd2bd037806/fnhum-15-685173-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验