Program in Physical Therapy, Departments of Orthopaedic Surgery, Neurology and Biomedical Engineering, Washington University, St. Louis, MO, USA.
J Biomech. 2022 Jun;138:111105. doi: 10.1016/j.jbiomech.2022.111105. Epub 2022 Apr 28.
Tenotomy, or the severing of then tendinous connection between muscle and bone, is an experimental model frequently used to assess muscular changes in response to unloading with retraction. It is most translationally relevant to rotator cuff (RC) tendon tears as these frequently progress to chronic muscle retraction and thus most recent tenotomy animal models have used RC muscles. Tenotomy induces chronic changes to muscle architecture including reduced muscle mass, muscle length, fiber length and pennation angle. However, most RC studies evaluating the physiological consequences of tenotomy do not account for changes in architecture, in part because these are difficult to measure in RC muscles. This is a critical omission as architectural changes can dramatically impact muscle force generating capacity. In this work, we develop a geometric model to predict changes in fiber length and pennation angle of the mouse supraspinatus and infraspinatus muscles given a measured muscle length. We then validate this model with detailed architectural measurements in tenotomized muscles and show a close match between predicted and experimental values. Finally, using this model, we find that predicted changes in architecture cannot explain the force deficit in tenotomized muscle. The contributions of this work are 1) a simple geometric model that predicts changes in architecture with retraction, validated in the mouse RC but with potential application across muscles and species and 2) data indicating that architectural adaptation is not solely responsible for the force deficit with tenotomy which suggests future research should focus on intrinsic changes to the myofiber.
肌腱切断术,即切断肌肉和骨骼之间的腱性连接,是一种常用于评估肌肉在回缩性失用状态下发生变化的实验模型。它与肩袖(RC)肌腱撕裂最为相关,因为这些撕裂通常会导致慢性肌肉回缩,因此最近的肌腱切断动物模型多采用 RC 肌肉。肌腱切断术会导致肌肉结构发生慢性变化,包括肌肉质量、肌肉长度、纤维长度和羽状角减小。然而,大多数评估肌腱切断生理后果的 RC 研究并没有考虑到结构的变化,部分原因是这些变化在 RC 肌肉中难以测量。这是一个关键的遗漏,因为结构变化会极大地影响肌肉产生力量的能力。在这项工作中,我们开发了一个几何模型,用于预测在给定肌肉长度的情况下,小鼠冈上肌和冈下肌的纤维长度和羽状角的变化。然后,我们使用肌腱切断后的详细结构测量值对该模型进行了验证,并显示出预测值与实验值之间的紧密匹配。最后,使用该模型,我们发现预测的结构变化不能解释肌腱切断后肌肉的力量缺陷。这项工作的贡献在于:1)一个简单的几何模型,可以预测回缩时的结构变化,该模型在小鼠 RC 中得到了验证,但具有在不同肌肉和物种中应用的潜力;2)数据表明,结构适应并不是导致肌腱切断后力量缺陷的唯一原因,这表明未来的研究应该集中在肌纤维的内在变化上。