Suppr超能文献

EppR,一种新的 LysR 家族转录调控因子,正向影响促生菌假单胞菌 G05 中吩嗪生物合成。

EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05.

机构信息

Department of Applied Microbiology and Bioengineering, School of Life Sciences, Ludong University, Yantai 264025, The People's Republic of China.

Affliated Hospital, Ludong University, Yantai 264025, The People's Republic of China.

出版信息

Microbiol Res. 2022 Jul;260:127050. doi: 10.1016/j.micres.2022.127050. Epub 2022 Apr 29.

Abstract

Pseudomonas chlororaphis G05 has the capability to repress the mycelial growth of many phytopathogenic fungi by producing and secreting certain antifungal compounds, including phenazines and pyrrolnitrin. Although some regulatory genes have been identified to be involved in antifungal metabolite production, the regulatory mechanism and pathway of phenazine-1-carboxylic acid biosynthesis remain poorly defined. To identify more new regulatory genes, we applied transposon mutagenesis with the chromosomal lacZ fusion strain G05Δphz::lacZ as an acceptor. In the white conjugant colony G05W05, a novel transcriptional regulator gene, eppR, was verified to be interrupted by the transposon mini-Tn5Kan. To evaluate the specific function of eppR, we created a set of eppR-deletion mutants, including G05ΔeppR, G05Δphz::lacZΔeppR and G05Δprn::lacZΔeppR. By quantifying the production of antifungal compounds and β-galactosidase expression, we found that the expression of the phenazine biosynthetic gene cluster (phz) and the production of phenazine-1-carboxylic acid were markedly reduced in the absence of EppR. Moreover, the pathogen suppression test verified that the yield of phenazine-1-carboxylic acid was significantly decreased when eppR was deleted in frame. At the same time, no changes in the expression of the phzI/phzR quorum-sensing (QS) system and the production of N-acyl homoserine lactones (AHLs) and pyrrolnitrin were found in the EppR-deficient mutant. In addition, chromosomal fusion analyses and quantitative real-time polymerase chain reaction (qRT-PCR) results also showed that EppR could positively mediate the expression of the phz cluster at the posttranscriptional level. In summary, EppR is specifically essential for phenazine biosynthesis but not for pyrrolnitrin biosynthesis in P. chlororaphis.

摘要

铜绿假单胞菌 G05 能够通过产生和分泌某些抗真菌化合物来抑制许多植物病原真菌的菌丝生长,包括吩嗪和吡咯并[1,2-a]吡嗪-1-羧酸。虽然已经鉴定出一些调节基因参与了抗真菌代谢产物的产生,但吩嗪-1-羧酸生物合成的调控机制和途径仍不清楚。为了鉴定更多的新调控基因,我们应用转座子突变技术,以带有染色体 lacZ 融合菌株 G05Δphz::lacZ 的接受体进行。在白色接合体菌落 G05W05 中,验证了一个新的转录调节基因 eppR 被转座子 mini-Tn5Kan 中断。为了评估 eppR 的特定功能,我们创建了一系列 eppR 缺失突变体,包括 G05ΔeppR、G05Δphz::lacZΔeppR 和 G05Δprn::lacZΔeppR。通过定量测定抗真菌化合物的产生和β-半乳糖苷酶的表达,我们发现 eppR 缺失时,吩嗪生物合成基因簇(phz)的表达和吩嗪-1-羧酸的产生明显减少。此外,病原体抑制试验证实,当 eppR 缺失时,吩嗪-1-羧酸的产量显著降低。同时,在 EppR 缺失突变体中,phzI/phzR 群体感应(QS)系统的表达和 N-酰基高丝氨酸内酯(AHLs)和吡咯并[1,2-a]吡嗪-1-羧酸的产生没有变化。此外,染色体融合分析和实时定量聚合酶链反应(qRT-PCR)结果也表明,EppR 可以在转录后水平上正向调节 phz 簇的表达。综上所述,EppR 是铜绿假单胞菌 G05 中吩嗪生物合成所必需的,而不是吡咯并[1,2-a]吡嗪-1-羧酸生物合成所必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验