Suppr超能文献

一氧化氮信号控制群体纤毛虫的集体收缩。

Nitric oxide signaling controls collective contractions in a colonial choanoflagellate.

机构信息

Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.

Department of Chemistry and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.

出版信息

Curr Biol. 2022 Jun 6;32(11):2539-2547.e5. doi: 10.1016/j.cub.2022.04.017. Epub 2022 May 2.

Abstract

Although signaling by the gaseous molecule nitric oxide (NO) regulates key physiological processes in animals, including contractility, immunity, development, and locomotion, the early evolution of animal NO signaling remains unclear. To reconstruct the role of NO in the animal stem lineage, we set out to study NO signaling in choanoflagellates, the closest living relatives of animals. In animals, NO produced by the nitric oxide synthase (NOS) canonically signals through cGMP by activating soluble guanylate cyclases (sGCs). We surveyed the distribution of the NO signaling pathway components across the diversity of choanoflagellates and found three species that express NOS (of either bacterial or eukaryotic origin), sGCs, and downstream genes previously shown to be involved in the NO/cGMP pathway. One of the species coexpressing sGCs and a bacterial-type NOS, Choanoeca flexa, forms multicellular sheets that undergo collective contractions controlled by cGMP. We found that treatment with NO induces cGMP synthesis and contraction in C. flexa. Biochemical assays show that NO directly binds C. flexa sGC1 and stimulates its cyclase activity. The NO/cGMP pathway acts independently from other inducers of C. flexa contraction, including mechanical stimuli and heat, but sGC activity is required for contractions induced by light-to-dark transitions. The output of NO signaling in C. flexa-contractions resulting in a switch from feeding to swimming-resembles the effect of NO in sponges and cnidarians, where it interrupts feeding and activates contractility. These data provide insights into the biology of the first animals and the evolution of NO signaling.

摘要

虽然气态分子一氧化氮 (NO) 的信号传导调节着动物的关键生理过程,包括收缩性、免疫、发育和运动,但动物 NO 信号传导的早期进化仍不清楚。为了重建 NO 在动物干细胞谱系中的作用,我们着手研究领鞭毛虫(动物最接近的活体亲属)中的 NO 信号传导。在动物中,一氧化氮合酶 (NOS) 产生的 NO 通过激活可溶性鸟苷酸环化酶 (sGC) 通常通过 cGMP 信号传导。我们调查了 NO 信号通路成分在领鞭毛虫多样性中的分布,并发现有三种物种表达了 NOS(细菌或真核起源)、sGC 和以前被证明参与 NO/cGMP 途径的下游基因。同时表达 sGC 和细菌型 NOS 的一种物种,Choanoeca flexa,形成多细胞薄片,这些薄片通过 cGMP 控制的集体收缩。我们发现,NO 处理会诱导 C. flexa 中的 cGMP 合成和收缩。生化测定表明,NO 直接结合 C. flexa sGC1 并刺激其环化酶活性。NO/cGMP 途径独立于 C. flexa 收缩的其他诱导剂(包括机械刺激和热量)起作用,但 sGC 活性是由光暗转换引起的收缩所必需的。NO 信号传导在 C. flexa 收缩中的输出导致从摄食到游泳的转变——类似于 NO 在海绵和刺胞动物中的作用,NO 中断摄食并激活收缩性。这些数据为第一个动物的生物学和 NO 信号传导的进化提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验