Department of Neuroscience, University of Florida, Gainesville, USA.
Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
Anim Cogn. 2023 Nov;26(6):1851-1864. doi: 10.1007/s10071-023-01833-7. Epub 2023 Nov 28.
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
神经元是动物认知的基础。然而,从机械论和进化的角度来看,动物认知的根源很难确定。两个概念框架都强调并有望解决这些挑战。首先,我们讨论了证据表明,动物的神经和其他综合系统在基础后生动物谱系中不止一次进化(趋同进化),这为我们未来的研究提供了独特的自然实验。最显著的例子是栉水母的神经系统和海绵动物及扁盘动物的类神经系统。其次,除了经典的突触连接,由数百种信号分子介导的化学连接组与神经元一起协同运作,是新兴特性和适应性的信息最丰富的来源。主要的间隙动态、多功能化学微环境在神经系统中还没有得到很好的理解。因此,需要新的工具和信息来建立协调的、但具有细胞特异性的容积传输与行为之间的机制联系。将我们所谓的化学连接组学和基础后生动物谱系中行为的细胞基础分析结合起来,可以为破译基本认知和智力的起源和早期进化奠定基础。