Suppr超能文献

使用卷积神经网络进行密度图估计以对结肠运输研究中的不透射线标记物进行计数。

Density map estimation with convolutional neural networks to count radiopaque markers on colonic transit studies.

作者信息

Tsai Andy

机构信息

Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA.

出版信息

Pediatr Radiol. 2022 Oct;52(11):2178-2187. doi: 10.1007/s00247-022-05371-1. Epub 2022 May 4.

Abstract

BACKGROUND

A radiopaque marker study measures colonic transit time for work-up of primary constipation. It requires the patient to ingest multiple tiny radiopaque markers, which the radiologist must count manually on follow-up abdominal radiographs. Counting these markers is tedious but cognitively simple.

OBJECTIVE

To develop a convolutional neural network (CNN) capable of counting the number of radiopaque markers on abdominal radiographs.

MATERIALS AND METHODS

The image archive at a large tertiary children's hospital was searched to identify abdominal radiographs performed in children for the indication of a radiopaque marker study. To establish the ground truth, a radiologist manually labeled the coordinates of the radiopaque markers in each radiograph and thereby generated a density map for that radiograph. A CNN was trained to estimate this density map from its corresponding abdominal radiograph. Spatially integrating the output density map provided an estimate of the number of markers in the radiograph. To assess model accuracy, mean absolute error and root mean square error were calculated.

RESULTS

The study cohort consisted of 436 radiographs (mean number of markers per radiograph: 34). This cohort was randomly divided into training, validation and testing sets consisting of 306, 65 and 65 radiographs, respectively. Based on the testing set, the CNN accurately estimated the number of markers in each radiograph with mean absolute error=2.6 markers and root mean square error=3.9 markers.

CONCLUSION

The proposed CNN generated promising results in counting the number of radiopaque markers on abdominal radiographs and offers the potential of automating the interpretation of colonic transit studies.

摘要

背景

不透X线标志物研究用于评估原发性便秘时的结肠传输时间。该研究要求患者摄入多个微小的不透X线标志物,放射科医生必须在后续的腹部X线片上手动计数这些标志物。计数这些标志物很繁琐,但认知上较为简单。

目的

开发一种能够对腹部X线片上的不透X线标志物数量进行计数的卷积神经网络(CNN)。

材料与方法

检索一家大型三级儿童医院的图像存档,以识别因不透X线标志物研究而对儿童进行的腹部X线片。为了确定真实情况,一名放射科医生手动标记了每张X线片中不透X线标志物的坐标,从而生成了该X线片的密度图。训练一个CNN从相应的腹部X线片估计这个密度图。对输出的密度图进行空间积分可提供X线片中标志物数量的估计值。为评估模型准确性,计算了平均绝对误差和均方根误差。

结果

研究队列包括436张X线片(每张X线片的标志物平均数量:34个)。该队列被随机分为训练集、验证集和测试集,分别由306张、65张和65张X线片组成。基于测试集,CNN能够准确估计每张X线片中的标志物数量,平均绝对误差为2.6个标志物,均方根误差为3.9个标志物。

结论

所提出的CNN在计数腹部X线片上不透X线标志物数量方面产生了有前景的结果,并提供了使结肠传输研究解释自动化的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验