Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India.
Angew Chem Int Ed Engl. 2022 Jul 11;61(28):e202203924. doi: 10.1002/anie.202203924. Epub 2022 May 17.
Precise control over interparticle interactions is essential to retain the functions of individual components in a self-assembled superstructure. Here, we report the design of a multifunctional bioplasmonic network via an electrostatically directed self-assembly process involving adenosine 5'-triphosphate (ATP). The present study unveils the ability of ATP to undergo a long-range self-assembly in the presence of cations and gold nanoparticles (AuNP). Modelling and NMR studies gave a qualitative insight into the major interactions driving the bioplasmonic network formation. ATP-Ca coordination helps in regulating the electrostatic interaction, which is crucial in transforming an uncontrolled precipitation into a kinetically controlled aggregation process. Remarkably, ATP and AuNP retained their inherent properties in the multifunctional bioplasmonic network. The generality of electrostatically directed self-assembly process was extended to different nucleotide-nanoparticle systems.
精确控制粒子间相互作用对于在自组装超结构中保留各个组件的功能至关重要。在这里,我们通过涉及腺苷 5'-三磷酸(ATP)的静电定向自组装过程报告了多功能生物等离子体网络的设计。本研究揭示了 ATP 在阳离子和金纳米粒子(AuNP)存在下进行长程自组装的能力。建模和 NMR 研究提供了对驱动生物等离子体网络形成的主要相互作用的定性见解。ATP-Ca 配位有助于调节静电相互作用,这对于将无控制的沉淀转化为动力学控制的聚集过程至关重要。值得注意的是,ATP 和 AuNP 在多功能生物等离子体网络中保留了其固有特性。静电定向自组装过程的通用性已扩展到不同的核苷酸-纳米粒子系统。