Suppr超能文献

蛋白质中单氨基酸替换的基于网络程序的比较分析。

Comparative analysis of web-based programs for single amino acid substitutions in proteins.

机构信息

Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, INDIA.

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, INDIA.

出版信息

PLoS One. 2022 May 4;17(5):e0267084. doi: 10.1371/journal.pone.0267084. eCollection 2022.

Abstract

Single amino-acid substitution in a protein affects its structure and function. These changes are the primary reasons for the advent of many complex diseases. Analyzing single point mutations in a protein is crucial to see their impact and to understand the disease mechanism. This has given many biophysical resources, including databases and web-based tools to explore the effects of mutations on the structure and function of human proteins. For a given mutation, each tool provides a score-based outcomes which indicate deleterious probability. In recent years, developments in existing programs and the introduction of new prediction algorithms have transformed the state-of-the-art protein mutation analysis. In this study, we have performed a systematic study of the most commonly used mutational analysis programs (10 sequence-based and 5 structure-based) to compare their prediction efficiency. We have carried out extensive mutational analyses using these tools for previously known pathogenic single point mutations of five different proteins. These analyses suggested that sequence-based tools, PolyPhen2, PROVEAN, and PMut, and structure-based web tool, mCSM have a better prediction accuracy. This study indicates that the employment of more than one program based on different approaches should significantly improve the prediction power of the available methods.

摘要

蛋白质中的单个氨基酸取代会影响其结构和功能。这些变化是许多复杂疾病出现的主要原因。分析蛋白质中的单点突变对于了解其影响和疾病机制至关重要。这为研究突变对人类蛋白质结构和功能的影响提供了许多生物物理资源,包括数据库和基于网络的工具。对于给定的突变,每个工具都会提供基于得分的结果,指示其有害的概率。近年来,现有程序的发展和新预测算法的引入改变了蛋白质突变分析的现状。在这项研究中,我们对最常用的突变分析程序(10 个基于序列的和 5 个基于结构的)进行了系统研究,以比较它们的预测效率。我们使用这些工具对五个不同蛋白质的先前已知致病性单点突变进行了广泛的突变分析。这些分析表明,基于序列的工具 PolyPhen2、PROVEAN 和 PMut 以及基于结构的网络工具 mCSM 具有更好的预测准确性。这项研究表明,采用基于不同方法的多个程序可以显著提高现有方法的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea95/9067658/dad417aeab2b/pone.0267084.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验