Suppr超能文献

仿生方法用于病毒样颗粒的自组装:从分子到材料。

Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials.

机构信息

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.

出版信息

Acc Chem Res. 2022 May 17;55(10):1349-1359. doi: 10.1021/acs.accounts.2c00056. Epub 2022 May 4.

Abstract

When viewed through the lens of materials science, nature provides a vast library of hierarchically organized structures that serve as inspiration and raw materials for new synthetic materials. The structural organization of complex bioarchitectures with advanced functions arises from the association of building blocks and is strongly supported by ubiquitous mechanisms of self-assembly, where interactions among components result in spontaneous assembly into defined structures. Viruses are exemplary, where a capsid structure, often formed from the self-assembly of many individual protein subunits, serves as a vehicle for the transport and protection of the viral genome. Higher-order assemblies of viral particles are also found in nature with unexpected collective behaviors. When the infectious aspect of viruses is removed, the self-assembly of viral particles and their potential for hierarchical assembly become an inspiration for the design and construction of a new class of functional materials at a range of different length scales. bacteriophage P22 is a well-studied model for understanding viral self-assembly and the construction of virus-like particle (VLP)-based materials. The formation of cage-like P22 VLP structures results from scaffold protein (SP)-directed self-assembly of coat protein (CP) subunits into icosahedral capsids with encapsulation of SP inside the capsid. Employing the CP-SP interaction during self-assembly, the encapsulation of guest protein cargos inside P22 VLPs can be achieved with control over the composition and the number of guest cargos. The morphology of cargo-loaded VLPs can be altered, along with changes in both the physical properties of the capsid and the cargo-capsid interactions, by mimicking aspects of the infectious P22 viral maturation. The structure of the capsid differentiates the inside cavity from the outside environment and serves as a protecting layer for the encapsulated cargos. Pores in the capsid shell regulate molecular exchange between inside and outside, where small molecules can traverse the capsid freely while the diffusion of larger molecules is limited by the pores. The interior cavity of the P22 capsid can be packed with hundreds of copies of cargo proteins (especially enzymes), enforcing intermolecular proximity, making this an ideal model system in which to study enzymatic catalysis in crowded and confined environments. These aspects highlight the development of functional nanomaterials from individual P22 VLPs, through biomimetic design and self-assembly, resulting in fabrication of nanoreactors with controlled catalytic behaviors.Individual P22 VLPs have been used as building blocks for the self-assembly of higher-order structures. This relies on a balance between the intrinsic interparticle repulsion and a tunable interparticle attraction. The ordering of VLPs within three-dimensional assemblies is dependent on the balance between repulsive and attractive interactions: too strong an attraction results in kinetically trapped disordered structures, while decreasing the attraction can lead to more ordered arrays. These higher-order assemblies display collective behavior of high charge density beyond those of the individual VLPs.The development of synthetic nanomaterials based on P22 VLPs demonstrates how the potential for hierarchical self-assembly can be applied to other self-assembling capsid structures across multiple length scales toward future bioinspired functional materials.

摘要

从材料科学的角度来看,自然界提供了一个庞大的分层结构文库,这些结构为新的合成材料提供了灵感和原材料。具有先进功能的复杂生物结构的结构组织源于构建块的组合,并得到无处不在的自组装机制的强烈支持,其中组件之间的相互作用导致自发组装成定义的结构。病毒就是一个很好的例子,衣壳结构通常由许多单个蛋白质亚基的自组装形成,作为病毒基因组运输和保护的载体。在自然界中也发现了具有意外集体行为的病毒颗粒的高级组装体。当去除病毒的传染性时,病毒颗粒的自组装及其分层组装的潜力成为设计和构建一系列不同长度尺度的新型功能材料的灵感来源。噬菌体 P22 是一种用于理解病毒自组装和基于病毒样颗粒 (VLP) 材料构建的研究良好的模型。笼状 P22 VLP 结构的形成是由支架蛋白 (SP) 引导衣壳蛋白 (CP) 亚基自组装成二十面体衣壳,SP 被包裹在衣壳内。通过在自组装过程中利用 CP-SP 相互作用,可以实现将客货运载蛋白包封在 P22 VLP 内,同时可以控制客货运载物的组成和数量。通过模拟传染性 P22 病毒成熟的某些方面,可以改变载货运载 VLP 的形态,同时改变衣壳的物理性质和货物-衣壳相互作用。衣壳的结构将内部腔室与外部环境区分开来,并充当封装货物的保护层。衣壳壳中的孔调节分子在内外之间的交换,小分子可以自由穿过衣壳,而较大分子的扩散则受到孔的限制。P22 衣壳的内部腔室可以装满数百个货物蛋白(尤其是酶)副本,强制分子间的接近度,使其成为研究拥挤和受限环境中酶催化的理想模型系统。这些方面突出了通过仿生设计和自组装从单个 P22 VLP 开发功能纳米材料,从而制造具有可控催化行为的纳米反应器。单个 P22 VLP 已被用作更高阶结构自组装的构建块。这依赖于颗粒间固有排斥力和可调颗粒间吸引力之间的平衡。三维组装中 VLP 的排序取决于排斥力和吸引力之间的平衡:吸引力过强会导致动力学捕获的无序结构,而降低吸引力会导致更有序的排列。这些高阶组装体表现出高于单个 VLP 的高电荷密度的集体行为。基于 P22 VLP 的合成纳米材料的开发表明,分层自组装的潜力如何可以应用于多个长度尺度的其他自组装衣壳结构,以实现未来的仿生功能材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验