Suppr超能文献

基于微流控技术的仿生水母微颗粒

Bioinspired Jellyfish Microparticles from Microfluidics.

作者信息

Yang Chaoyu, Yu Yunru, Zhao Yuanjin, Shang Luoran

机构信息

Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.

出版信息

Research (Wash D C). 2023;6:0034. doi: 10.34133/research.0034. Epub 2023 Jan 16.

Abstract

Nonspherical particles have attracted increasing interest because of their shape anisotropy. However, the current methods to prepare anisotropic particles suffer from complex generation processes and limited shape diversity. Here, we develop a piezoelectric microfluidic system to generate complex flow configurations and fabricate jellyfish-like microparticles. In this delicate system, the piezoelectric vibration could evolve a jellyfish-like flow configuration in the microchannel and the in situ photopolymerization could instantly capture the flow architecture. The sizes and morphologies of the particles are precisely controlled by tuning the piezoelectric and microfluidic parameters. Furthermore, multi-compartmental microparticles with a dual-layer structure are achieved by modifying the injecting channel geometry. Moreover, such unique a shape endows the particles with flexible motion ability especially when stimuli-responsive materials are incorporated. On the basis of that, we demonstrate the capability of the jellyfish-like microparticles in highly efficient adsorption of organic pollutants under external control. Thus, it is believed that such jellyfish-like microparticles are highly versatile in potential applications and the piezoelectric-integrated microfluidic strategy could open an avenue for the creation of such anisotropic particles.

摘要

非球形颗粒因其形状各向异性而越来越受到关注。然而,目前制备各向异性颗粒的方法存在生成过程复杂且形状多样性有限的问题。在此,我们开发了一种压电微流控系统,以产生复杂的流动构型并制造水母状微颗粒。在这个精巧的系统中,压电振动可在微通道中形成水母状流动构型,原位光聚合可即时捕捉流动结构。通过调节压电和微流控参数,可精确控制颗粒的尺寸和形态。此外,通过改变注入通道几何形状可实现具有双层结构的多隔室微颗粒。而且,这种独特形状赋予颗粒灵活的运动能力,尤其是当掺入刺激响应材料时。在此基础上,我们展示了水母状微颗粒在外部控制下对有机污染物的高效吸附能力。因此,相信这种水母状微颗粒在潜在应用中具有高度通用性,且压电集成微流控策略可为制造此类各向异性颗粒开辟一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/10076059/0d15db3a23fe/research.0034.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验