School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
J Phys Chem B. 2022 May 19;126(19):3593-3606. doi: 10.1021/acs.jpcb.2c00943. Epub 2022 May 4.
The preferred alkane carbon number (PACN) in the normalized hydrophilic-lipophilic deviation (HLD) theory is a numerical parameter and a transferable scale to characterize the amphiphilicity of surfactants, which is usually measured experimentally using the fish diagram or phase inversion temperature (PIT) methods, and the experimental measurement can only be applied to existing surfactants. Here, for the first time, we propose a procedure to estimate the PACN of CE nonionic surfactants directly from dissipative particle dynamics (DPD) simulation. The procedure leverages the method of moment concept to quantitatively evaluate the bending tendency of nonionic surfactant monolayers by calculating the torque density. Seven nonionic surfactants, CE (CE, CE, CE, CE, CE, CE, and CE), with known PACNs are modeled. Two surfactants, CE and CE, were first selected to train and test the interaction parameters, and the relationship between interaction parameters and torque density was mapped for the CE-octane-water system using the artificial neural network (ANN) fitting approach to derive the interaction parameters giving zero torque density, then the interaction parameters were tested in the CE-dodecane-water system to get the final tuned interaction parameters for PACN estimation. With this procedure, we reproduce the PACN values and their trend of seven nonionic surfactants with reasonable accuracy, which opens the door for quantitative comparison of surfactant amphiphilicity and surfactant classification in silico using the PACN as a transferrable scale.
在归一化亲水-亲脂偏离(HLD)理论中,首选烷烃碳数(PACN)是一个数值参数,也是一个可转移的尺度,用于描述表面活性剂的两亲性,通常使用鱼图或相反转温度(PIT)方法进行实验测量,而实验测量只能应用于现有表面活性剂。在这里,我们首次提出了一种从耗散粒子动力学(DPD)模拟直接估计 CE 非离子表面活性剂 PACN 的程序。该程序利用矩概念方法通过计算扭矩密度来定量评估非离子表面活性剂单层的弯曲趋势。七种已知 PACN 的非离子表面活性剂 CE(CE、CE、CE、CE、CE、CE 和 CE)进行建模。首先选择两种表面活性剂 CE 和 CE 来训练和测试相互作用参数,并使用人工神经网络(ANN)拟合方法将相互作用参数与扭矩密度之间的关系映射到 CE-辛烷-水体系中,以得出产生零扭矩密度的相互作用参数,然后在 CE-十二烷-水体系中测试相互作用参数,以获得最终调整的 PACN 估计相互作用参数。通过该程序,我们以合理的精度再现了七种非离子表面活性剂的 PACN 值及其趋势,为使用 PACN 作为可转移尺度在计算机中定量比较表面活性剂的两亲性和表面活性剂分类开辟了道路。