Suppr超能文献

神经蝇使在强风中敏捷飞行的快速学习成为可能。

Neural-Fly enables rapid learning for agile flight in strong winds.

机构信息

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.

出版信息

Sci Robot. 2022 May 4;7(66):eabm6597. doi: 10.1126/scirobotics.abm6597.

Abstract

Executing safe and precise flight maneuvers in dynamic high-speed winds is important for the ongoing commoditization of uninhabited aerial vehicles (UAVs). However, because the relationship between various wind conditions and its effect on aircraft maneuverability is not well understood, it is challenging to design effective robot controllers using traditional control design methods. We present Neural-Fly, a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning. Neural-Fly builds on two key observations that aerodynamics in different wind conditions share a common representation and that the wind-specific part lies in a low-dimensional space. To that end, Neural-Fly uses a proposed learning algorithm, domain adversarially invariant meta-learning (DAIML), to learn the shared representation, only using 12 minutes of flight data. With the learned representation as a basis, Neural-Fly then uses a composite adaptation law to update a set of linear coefficients for mixing the basis elements. When evaluated under challenging wind conditions generated with the Caltech Real Weather Wind Tunnel, with wind speeds up to 43.6 kilometers/hour (12.1 meters/second), Neural-Fly achieves precise flight control with substantially smaller tracking error than stateof-the-art nonlinear and adaptive controllers. In addition to strong empirical performance, the exponential stability of Neural-Fly results in robustness guarantees. Last, our control design extrapolates to unseen wind conditions, is shown to be effective for outdoor flights with only onboard sensors, and can transfer across drones with minimal performance degradation.

摘要

在动态高速风环境中执行安全精确的飞行机动对于正在实现的无人飞行器 (UAV) 商品化非常重要。然而,由于各种风况及其对飞机机动性的影响之间的关系尚未得到很好的理解,因此使用传统控制设计方法设计有效的机器人控制器具有挑战性。我们提出了 Neural-Fly,这是一种基于学习的方法,通过深度学习纳入预先训练的表示来实现快速在线自适应。Neural-Fly 基于两个关键观察结果,即在不同风况下的空气动力学具有共同的表示,并且特定于风的部分位于低维空间中。为此,Neural-Fly 使用一种名为域对抗不变元学习(DAIML)的学习算法来学习共享表示,仅使用 12 分钟的飞行数据。有了学习到的表示作为基础,Neural-Fly 然后使用复合自适应律来更新一组用于混合基础元素的线性系数。在使用 Caltech 真实天气风洞生成的具有挑战性的风况下进行评估时,风速高达 43.6 公里/小时(12.1 米/秒),Neural-Fly 实现了精确的飞行控制,跟踪误差明显小于最先进的非线性和自适应控制器。除了强大的经验性能外,Neural-Fly 的指数稳定性还保证了鲁棒性。最后,我们的控制设计可以外推到未见过的风况,对于仅使用机载传感器的户外飞行是有效的,并且可以在最小性能下降的情况下在无人机之间进行转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验