Suppr超能文献

用于无人机速度自适应的神经控制和在线学习。

Neural Control and Online Learning for Speed Adaptation of Unmanned Aerial Vehicles.

机构信息

Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand.

SDU UAS Centre (Unmanned Aerial Systems), The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark.

出版信息

Front Neural Circuits. 2022 Apr 25;16:839361. doi: 10.3389/fncir.2022.839361. eCollection 2022.

Abstract

Unmanned aerial vehicles (UAVs) are involved in critical tasks such as inspection and exploration. Thus, they have to perform several intelligent functions. Various control approaches have been proposed to implement these functions. Most classical UAV control approaches, such as model predictive control, require a dynamic model to determine the optimal control parameters. Other control approaches use machine learning techniques that require multiple learning trials to obtain the proper control parameters. All these approaches are computationally expensive. Our goal is to develop an efficient control system for UAVs that does not require a dynamic model and allows them to learn control parameters online with only a few trials and inexpensive computations. To achieve this, we developed a neural control method with fast online learning. Neural control is based on a three-neuron network, whereas the online learning algorithm is derived from a neural correlation-based learning principle with predictive and reflexive sensory information. This neural control technique is used here for the speed adaptation of the UAV. The control technique relies on a simple input signal from a compact optical distance measurement sensor that can be converted into predictive and reflexive sensory information for the learning algorithm. Such speed adaptation is a fundamental function that can be used as part of other complex control functions, such as obstacle avoidance. The proposed technique was implemented on a real UAV system. Consequently, the UAV can quickly learn within 3-4 trials to proactively adapt its flying speed to brake at a safe distance from the obstacle or target in the horizontal and vertical planes. This speed adaptation is also robust against wind perturbation. We also demonstrated a combination of speed adaptation and obstacle avoidance for UAV navigations, which is an important intelligent function toward inspection and exploration.

摘要

无人机(UAV)参与诸如检查和勘探等关键任务。因此,它们必须执行多个智能功能。已经提出了各种控制方法来实现这些功能。大多数经典的 UAV 控制方法,如模型预测控制,需要一个动态模型来确定最优的控制参数。其他控制方法使用机器学习技术,这些技术需要多次学习试验才能获得适当的控制参数。所有这些方法的计算成本都很高。我们的目标是为 UAV 开发一个高效的控制系统,该系统不需要动态模型,并允许它们通过仅几次试验和廉价的计算在线学习控制参数。为了实现这一目标,我们开发了一种具有快速在线学习功能的神经控制方法。神经控制基于一个三神经元网络,而在线学习算法则源自基于神经相关的学习原理,具有预测和反射性感觉信息。这种神经控制技术用于 UAV 的速度自适应。控制技术依赖于一个简单的输入信号,来自紧凑的光学距离测量传感器,可以将其转换为预测和反射性感觉信息,用于学习算法。这种速度自适应是一种基本功能,可以用作其他复杂控制功能(如避障)的一部分。所提出的技术已在实际的 UAV 系统上实现。因此,UAV 可以在 3-4 次试验内快速学习,主动适应其飞行速度,以在水平和垂直平面上安全距离处制动障碍物或目标。这种速度自适应也对风干扰具有鲁棒性。我们还展示了速度自适应和避障的组合,用于 UAV 导航,这是检查和勘探的一个重要智能功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be80/9082606/ec4344a96893/fncir-16-839361-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验