NYU Long Island School of Medicine, 11501 Mineola, NY, USA.
NYU Long Island School of Medicine, 11501 Mineola, NY, USA.
Exp Gerontol. 2022 Jul;164:111828. doi: 10.1016/j.exger.2022.111828. Epub 2022 May 1.
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is characterized by progressive memory loss and cognitive impairment. Our understanding of AD pathogenesis is limited and no effective disease-modifying treatment is available. Mitochondria are cytoplasmic organelles critical to the homeostatic regulation of glucose and energy in the cell.
Mitochondrial abnormalities are found early in the course of AD and dysfunctional mitochondria are involved in AD progression. The resulting respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species are highly damaging to neurons. Restoration of mitochondrial function may provide a novel therapeutic strategy for AD.
This review discusses the specifics of mitochondrial fragmentation, imbalances in fission and fusion, and DNA damage seen in AD and the contribution of compromised mitochondrial activity to AD etiopathogenesis. It explores how an understanding of the processes underlying mitochondrial failure may lead to urgently needed treatment innovations. It considers individual mitochondrial proteins that have emerged as promising drug targets and evaluates neuroprotective agents that could improve the functional state of mitochondria in the setting of AD.
There is great promise in exploring original approaches to preserving mitochondrial viability as a means to achieve breakthroughs in treating AD.
阿尔茨海默病(AD)是全球最常见的痴呆症形式,其特征是进行性记忆丧失和认知障碍。我们对 AD 发病机制的了解有限,并且没有有效的疾病修饰治疗方法。线粒体是细胞质细胞器,对细胞内葡萄糖和能量的动态平衡调节至关重要。
AD 病程早期就会出现线粒体异常,功能失调的线粒体参与 AD 的进展。由此产生的呼吸链损伤、神经元凋亡和活性氧的产生对神经元有很大的损害。恢复线粒体功能可能为 AD 提供一种新的治疗策略。
本综述讨论了 AD 中观察到的线粒体碎片化、裂变和融合的不平衡以及 DNA 损伤的具体情况,以及受损的线粒体活动对 AD 病因发病机制的贡献。它探讨了对线粒体衰竭背后过程的理解如何可能导致急需的治疗创新。它考虑了作为有希望的药物靶点出现的单个线粒体蛋白,并评估了在 AD 情况下可能改善线粒体功能状态的神经保护剂。
探索保护线粒体活力的原始方法有很大的希望,这是在治疗 AD 方面取得突破的一种手段。