Suppr超能文献

DRUG-seq 为神经科学药物发现提供了无偏的生物活性检测结果。

DRUG-seq Provides Unbiased Biological Activity Readouts for Neuroscience Drug Discovery.

机构信息

Chemical and Biological Therapeutics, Novartis Institutes for BioMedical Research, Basel, 4056, Switzerland.

出版信息

ACS Chem Biol. 2022 Jun 17;17(6):1401-1414. doi: 10.1021/acschembio.1c00920. Epub 2022 May 4.

Abstract

Unbiased transcriptomic RNA-seq data has provided deep insights into biological processes. However, its impact in drug discovery has been narrow given high costs and low throughput. Proof-of-concept studies with Digital RNA with pertUrbation of Genes (DRUG)-seq demonstrated the potential to address this gap. We extended the DRUG-seq platform by subjecting it to rigorous testing and by adding an open-source analysis pipeline. The results demonstrate high reproducibility and ability to resolve the mechanism(s) of action for a diverse set of compounds. Furthermore, we demonstrate how this data can be incorporated into a drug discovery project aiming to develop therapeutics for schizophrenia using human stem cell-derived neurons. We identified both an on-target activation signature, induced by a set of chemically distinct positive allosteric modulators of the -methyl-d-aspartate (NMDA) receptor, and independent off-target effects. Overall, the protocol and open-source analysis pipeline are a step toward industrializing RNA-seq for high-complexity transcriptomics studies performed at a saturating scale.

摘要

无偏转录组 RNA-seq 数据为深入了解生物过程提供了深刻的见解。然而,由于成本高、通量低,其在药物发现中的应用范围很窄。具有基因扰动的数字 RNA(DRUG)-seq 的概念验证研究表明,有潜力解决这一差距。我们通过对 DRUG-seq 平台进行严格的测试,并添加了一个开源分析管道,扩展了该平台。结果表明,该平台具有很高的重现性,并且能够解析多种化合物的作用机制。此外,我们还展示了如何将这些数据纳入旨在使用人类干细胞衍生神经元开发精神分裂症治疗药物的药物发现项目中。我们确定了一个靶激活特征,该特征是由一组化学上不同的 N-甲基-D-天冬氨酸(NMDA)受体正变构调节剂诱导的,以及独立的非靶作用。总的来说,该方案和开源分析管道是朝着在饱和规模上进行高复杂性转录组学研究的 RNA-seq 工业化迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae51/9207813/43933014a819/cb1c00920_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验