Identifying brain-penetrant small-molecule modulators of human microglia using a cellular model of synaptic pruning.

作者信息

McCrea Liam T, Batorsky Rebecca E, Bowen Joshua J, Yeh Hana, Thanos Jessica M, Fu Ting, Perlis Roy H, Sheridan Steven D

机构信息

Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.

Tufts Institute for Artificial Intelligence, Tufts University, Medford, MA, USA.

出版信息

Neuropsychopharmacology. 2025 May 9. doi: 10.1038/s41386-025-02123-1.

Abstract

Microglia dysregulation is implicated across a range of neurodevelopmental and neurodegenerative disorders, making their modulation a promising therapeutic target. Using PBMC-derived induced microglia-like cells (piMGLCs) in a scalable assay, we screened 489 CNS-penetrant compounds for modulation of microglial phagocytosis of human synaptosomes in a validated assay for microglia-mediated synaptic pruning. Compounds from the library that reduced phagocytosis by ≥2 standard deviations across the library without cytotoxicity were validated in secondary screens, with 28 of them further confirmed to reduce phagocytosis by 50% or more. These compounds comprise a wide range of therapeutic classes with different mechanisms of action, including immunosuppressants, kinase inhibitors, antipsychotics, and epigenetic modulators. Image-based morphological measurements were calculated to measure the degree of ramified vs. ameboid morphotypes as an indicator of activation state. Additionally, transcriptomic profiling indicated divergent effects on cell signaling, metabolism, activation, and actin dynamics across confirmed compounds. In particular, multiple CNS-penetrant small molecules with prior FDA approval or demonstration of safety in vivo demonstrated modulatory effects on microglia. For example, identified drugs such as the tyrosine kinase inhibitors lapatinib, alectinib, and lazertinib and the epigenetic modulator vorinostat have been approved for various cancer treatments and are being investigated for other indications; however, they have not been extensively studied in patients for neurodevelopmental and neurodegenerative disorders. These potential disease-modifying agents represent high-priority candidates for repositioning studies in neurodevelopmental, neuroinflammatory, or neurodegenerative disorders.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索