Suppr超能文献

发现首个纳米级七碳糖基转移酶 I 抑制剂,揭示新的氨基糖苷类药物靶标和潜在的作用机制。

Discovery of first-in-class nanomolar inhibitors of heptosyltransferase I reveals a new aminoglycoside target and potential alternative mechanism of action.

机构信息

Department of Chemistry, Wesleyan University, Middletown, CT, 06459, USA.

Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, 55455, USA.

出版信息

Sci Rep. 2022 May 4;12(1):7302. doi: 10.1038/s41598-022-10776-x.

Abstract

A clinically relevant inhibitor for Heptosyltransferase I (HepI) has been sought after for many years because of its critical role in the biosynthesis of lipopolysaccharides on bacterial cell surfaces. While many labs have discovered or designed novel small molecule inhibitors, these compounds lacked the bioavailability and potency necessary for therapeutic use. Extensive characterization of the HepI protein has provided valuable insight into the dynamic motions necessary for catalysis that could be targeted for inhibition. Structural inspection of Kdo-lipid A suggested aminoglycoside antibiotics as potential inhibitors for HepI. Multiple aminoglycosides have been experimentally validated to be first-in-class nanomolar inhibitors of HepI, with the best inhibitor demonstrating a K of 600 ± 90 nM. Detailed kinetic analyses were performed to determine the mechanism of inhibition while circular dichroism spectroscopy, intrinsic tryptophan fluorescence, docking, and molecular dynamics simulations were used to corroborate kinetic experimental findings. While aminoglycosides have long been described as potent antibiotics targeting bacterial ribosomes' protein synthesis leading to disruption of the stability of bacterial cell membranes, more recently researchers have shown that they only modestly impact protein production. Our research suggests an alternative and novel mechanism of action of aminoglycosides in the inhibition of HepI, which directly leads to modification of LPS production in vivo. This finding could change our understanding of how aminoglycoside antibiotics function, with interruption of LPS biosynthesis being an additional and important mechanism of aminoglycoside action. Further research to discern the microbiological impact of aminoglycosides on cells is warranted, as inhibition of the ribosome may not be the sole and primary mechanism of action. The inhibition of HepI by aminoglycosides may dramatically alter strategies to modify the structure of aminoglycosides to improve the efficacy in fighting bacterial infections.

摘要

多年来,人们一直在寻找一种具有临床相关性的七碳糖基转移酶 I(HepI)抑制剂,因为它在细菌细胞表面脂多糖的生物合成中起着关键作用。尽管许多实验室已经发现或设计了新型小分子抑制剂,但这些化合物缺乏治疗用途所需的生物利用度和效力。对 HepI 蛋白的广泛特征分析为催化所需的动态运动提供了有价值的见解,这些运动可能成为抑制的目标。Kdo-脂多糖的结构检查表明氨基糖苷类抗生素可能是 HepI 的潜在抑制剂。多项实验已经验证了多种氨基糖苷类抗生素是 HepI 的一流纳米级抑制剂,其中最好的抑制剂的 K 值为 600±90 nM。进行了详细的动力学分析以确定抑制机制,同时使用圆二色性光谱、本征色氨酸荧光、对接和分子动力学模拟来证实动力学实验结果。虽然氨基糖苷类抗生素长期以来一直被描述为针对细菌核糖体中蛋白质合成的强效抗生素,从而导致细菌细胞膜稳定性破坏,但最近研究人员表明,它们对蛋白质产生的影响仅适度。我们的研究表明,氨基糖苷类抗生素在抑制 HepI 中的作用具有替代和新颖的机制,这直接导致 LPS 产生的修饰。这一发现可能改变我们对氨基糖苷类抗生素作用方式的理解,中断 LPS 生物合成是氨基糖苷类抗生素作用的另一个重要机制。进一步研究以辨别氨基糖苷类抗生素对细胞的微生物影响是有必要的,因为核糖体的抑制可能不是唯一和主要的作用机制。氨基糖苷类抗生素对 HepI 的抑制可能会极大地改变修饰氨基糖苷类抗生素结构以提高对抗细菌感染功效的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1381/9068772/5b53cb655ec4/41598_2022_10776_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验