Suppr超能文献

低级别胶质瘤患者吞噬作用相关调节因子的综合分析以辅助预后预测和免疫治疗

Comprehensive Analysis of Phagocytosis-Related Regulators to Aid Prognostic Prediction and Immunotherapy in Patients with Low-Grade Glioma.

作者信息

Li Jianwen, Huang Qianrong, Mo Ligen

机构信息

College of Oncology, Guangxi Medical University, Nanning, Guangxi, China.

Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.

出版信息

Dis Markers. 2022 Apr 12;2022:4142684. doi: 10.1155/2022/4142684. eCollection 2022.

Abstract

Antibody-dependent cellular phagocytosis- (ADCP-) related regulators (PRs) have been confirmed an important role in immunotherapy. However, the characterization of specific PRs in low-grade glioma (LGG) has not been comprehensively explored. In this study, we retrieved RNA-seq and CRISPR-Cas9 data to identify specific PRs in LGG patients and constructed a PRs-signature using the LASSO-Cox algorithm. The ROC analysis and Kaplan-Meier analysis showed that PRs-signature had a good predictive effect, and the multivariate Cox regression analysis showed that PRs-risk scores were independent prognostic factors correlated with overall survival (OS). In addition, CIBERSORT, ssGSEA, and MCP counter algorithms were used to explore immune cell content in different risk groups, especially in the correlation between macrophages and specific PRs. Finally, mRNA expression was upregulated in the high-risk group compared with the low-risk group at most immune checkpoints and proinflammatory factors. In conclusion, we constructed a prediction model for prognostic management and revealed the cross-talk between specific PRs and immunotherapy in LGG patients.

摘要

抗体依赖性细胞吞噬作用(ADCP)相关调节因子(PRs)已被证实在免疫治疗中发挥重要作用。然而,低级别胶质瘤(LGG)中特定PRs的特征尚未得到全面探索。在本研究中,我们检索了RNA测序和CRISPR-Cas9数据,以识别LGG患者中的特定PRs,并使用LASSO-Cox算法构建了PRs特征。ROC分析和Kaplan-Meier分析表明,PRs特征具有良好的预测效果,多变量Cox回归分析表明,PRs风险评分是与总生存期(OS)相关的独立预后因素。此外,使用CIBERSORT、ssGSEA和MCP counter算法探索不同风险组中的免疫细胞含量,特别是巨噬细胞与特定PRs之间的相关性。最后,在大多数免疫检查点和促炎因子方面,高风险组的mRNA表达高于低风险组。总之,我们构建了一个用于预后管理的预测模型,并揭示了LGG患者中特定PRs与免疫治疗之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0631/9061072/09231dc56fc2/DM2022-4142684.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验