文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的铜死亡和坏死性凋亡相关分子亚型鉴定,以辅助低级别胶质瘤的预后评估和免疫治疗反应预测。

Machine learning identification of cuproptosis and necroptosis-associated molecular subtypes to aid in prognosis assessment and immunotherapy response prediction in low-grade glioma.

作者信息

Miao Ye, Liu Jifeng, Liu Xishu, Yuan Qihang, Li Hanshuo, Zhang Yunshu, Zhan Yibo, Feng Xiaoshi

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.

Department of Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.

出版信息

Front Genet. 2022 Sep 12;13:951239. doi: 10.3389/fgene.2022.951239. eCollection 2022.


DOI:10.3389/fgene.2022.951239
PMID:36186436
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9524234/
Abstract

Both cuproptosis and necroptosis are typical cell death processes that serve essential regulatory roles in the onset and progression of malignancies, including low-grade glioma (LGG). Nonetheless, there remains a paucity of research on cuproptosis and necroptosis-related gene (CNRG) prognostic signature in patients with LGG. We acquired patient data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) and captured CNRGs from the well-recognized literature. Firstly, we comprehensively summarized the pan-cancer landscape of CNRGs from the perspective of expression traits, prognostic values, mutation profiles, and pathway regulation. Then, we devised a technique for predicting the clinical efficacy of immunotherapy for LGG patients. Non-negative matrix factorization (NMF) defined by CNRGs with prognostic values was performed to generate molecular subtypes (i.e., C1 and C2). C1 subtype is characterized by poor prognosis in terms of disease-specific survival (DSS), progression-free survival (PFS), and overall survival (OS), more patients with G3 and tumour recurrence, high abundance of immunocyte infiltration, high expression of immune checkpoints, and poor response to immunotherapy. LASSO-SVM-random Forest analysis was performed to aid in developing a novel and robust CNRG-based prognostic signature. LGG patients in the TCGA and GEO databases were categorized into the training and test cohorts, respectively. A five-gene signature, including SQSTM1, ZBP1, PLK1, CFLAR, and FADD, for predicting OS of LGG patients was constructed and its predictive reliability was confirmed in both training and test cohorts. In both the training and the test datasets (cohorts), higher risk scores were linked to a lower OS rate. The time-dependent ROC curve proved that the risk score had outstanding prediction efficiency for LGG patients in the training and test cohorts. Univariate and multivariate Cox regression analyses showed the CNRG-based prognostic signature independently functioned as a risk factor for OS in LGG patients. Furthermore, we developed a highly reliable nomogram to facilitate the clinical practice of the CNRG-based prognostic signature (AUC > 0.9). Collectively, our results gave a promising understanding of cuproptosis and necroptosis in LGG, as well as a tailored prediction tool for prognosis and immunotherapeutic responses in patients.

摘要

铜死亡和坏死性凋亡都是典型的细胞死亡过程,在包括低级别胶质瘤(LGG)在内的恶性肿瘤的发生和发展中起着重要的调节作用。尽管如此,关于LGG患者中铜死亡和坏死性凋亡相关基因(CNRG)预后特征的研究仍然很少。我们从癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)获取了患者数据,并从公认的文献中筛选出CNRGs。首先,我们从表达特征、预后价值、突变谱和通路调控的角度全面总结了CNRGs的泛癌格局。然后,我们设计了一种预测LGG患者免疫治疗临床疗效的技术。对具有预后价值的CNRGs进行非负矩阵分解(NMF)以生成分子亚型(即C1和C2)。C1亚型在疾病特异性生存(DSS)、无进展生存(PFS)和总生存(OS)方面预后较差,更多G3级和肿瘤复发患者,免疫细胞浸润丰度高,免疫检查点高表达,对免疫治疗反应差。进行LASSO-SVM-随机森林分析以帮助开发一种基于CNRG的新型且稳健的预后特征。TCGA和GEO数据库中的LGG患者分别被分类为训练队列和测试队列。构建了一个包括SQSTM1、ZBP1、PLK1、CFLAR和FADD的五基因特征来预测LGG患者的OS,并在训练队列和测试队列中均证实了其预测可靠性。在训练和测试数据集(队列)中,较高的风险评分与较低的OS率相关。时间依赖性ROC曲线证明风险评分对训练和测试队列中的LGG患者具有出色的预测效率。单因素和多因素Cox回归分析表明,基于CNRG的预后特征独立地作为LGG患者OS的危险因素。此外,我们开发了一个高度可靠的列线图以促进基于CNRG的预后特征的临床实践(AUC>0.9)。总体而言,我们的结果为LGG中的铜死亡和坏死性凋亡提供了有前景的理解,以及为患者的预后和免疫治疗反应提供了定制的预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/89ba06de12dc/fgene-13-951239-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/8b8290abf0b7/fgene-13-951239-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/3bbf98f39547/fgene-13-951239-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/2abfc5045f44/fgene-13-951239-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/bda7030c8f7e/fgene-13-951239-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/d0374f848759/fgene-13-951239-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/4522e25cf638/fgene-13-951239-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/c804fbac655d/fgene-13-951239-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/fcaeaebe99b9/fgene-13-951239-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/ad63bf4f5976/fgene-13-951239-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/0ccfcb1bb667/fgene-13-951239-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/1f793651afb6/fgene-13-951239-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/006a00013e9c/fgene-13-951239-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/89ba06de12dc/fgene-13-951239-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/8b8290abf0b7/fgene-13-951239-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/3bbf98f39547/fgene-13-951239-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/2abfc5045f44/fgene-13-951239-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/bda7030c8f7e/fgene-13-951239-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/d0374f848759/fgene-13-951239-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/4522e25cf638/fgene-13-951239-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/c804fbac655d/fgene-13-951239-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/fcaeaebe99b9/fgene-13-951239-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/ad63bf4f5976/fgene-13-951239-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/0ccfcb1bb667/fgene-13-951239-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/1f793651afb6/fgene-13-951239-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/006a00013e9c/fgene-13-951239-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6544/9524234/89ba06de12dc/fgene-13-951239-g013.jpg

相似文献

[1]
Machine learning identification of cuproptosis and necroptosis-associated molecular subtypes to aid in prognosis assessment and immunotherapy response prediction in low-grade glioma.

Front Genet. 2022-9-12

[2]
Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas.

Front Immunol. 2022

[3]
Identification and verification of the ferroptosis- and pyroptosis-associated prognostic signature for low-grade glioma.

Bosn J Basic Med Sci. 2022-9-16

[4]
A cuproptosis-related lncRNAs signature for prognosis, chemotherapy, and immune checkpoint blockade therapy of low-grade glioma.

Front Mol Biosci. 2022-8-17

[5]
Cuproptosis-related gene-located DNA methylation in lower-grade glioma: Prognosis and tumor microenvironment.

Cancer Biomark. 2024

[6]
A cuproptosis-based prognostic model for predicting survival in low-grade glioma.

Aging (Albany NY). 2024-5-9

[7]
Identification of cuproptosis-related subtypes and the development of a prognostic model in glioma.

Front Genet. 2023-3-1

[8]
A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma.

Front Oncol. 2023-1-26

[9]
System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma.

J Transl Med. 2022-10-4

[10]
A novel peroxisome-related gene signature predicts clinical prognosis and is associated with immune microenvironment in low-grade glioma.

PeerJ. 2024

引用本文的文献

[1]
The emerging role of cuproptosis in spinal cord injury.

Front Immunol. 2025-6-16

[2]
Progress in Research on Regulated Cell Death in Cerebral Ischaemic Injury After Cardiac Arrest.

J Cell Mol Med. 2025-2

[3]
LDH Isoenzyme and GAA-BSA Nanoparticles: A Novel Therapy Approach for Proneural Subtype Glioblastoma Multiforme.

J Cancer. 2025-1-6

[4]
An integrative analysis based on multiple cell death patterns identifies an immunosuppressive subtype and establishes a prognostic signature in lower-grade glioma.

Ann Med. 2024-12

[5]
Machine learning predicts cuproptosis-related lncRNAs and survival in glioma patients.

Sci Rep. 2024-9-27

[6]
Cuproptosis: unveiling a new frontier in cancer biology and therapeutics.

Cell Commun Signal. 2024-5-1

[7]
Copper homeostasis and cuproptosis in atherosclerosis: metabolism, mechanisms and potential therapeutic strategies.

Cell Death Discov. 2024-1-13

[8]
Identification of novel biomarkers based on lipid metabolism-related molecular subtypes for moderately severe and severe acute pancreatitis.

Lipids Health Dis. 2024-1-2

[9]
Comprehensive analysis of necroptosis-related genes in renal ischemia-reperfusion injury.

Front Immunol. 2023

[10]
Identification and characterization of interferon-γ signaling-based personalized heterogeneity and therapeutic strategies in patients with pancreatic cancer.

Front Oncol. 2023-10-24

本文引用的文献

[1]
HIF1: A Novel Biomarker with Potential Prognostic and Immunotherapy in Pan-cancer.

Oxid Med Cell Longev. 2022

[2]
Identification of CFHR4 as a Potential Prognosis Biomarker Associated With lmmune Infiltrates in Hepatocellular Carcinoma.

Front Immunol. 2022

[3]
Copper induces cell death by targeting lipoylated TCA cycle proteins.

Science. 2022-3-18

[4]
Identification and verification of the ferroptosis- and pyroptosis-associated prognostic signature for low-grade glioma.

Bosn J Basic Med Sci. 2022-9-16

[5]
Prognostic and Predictive Models for Left- and Right- Colorectal Cancer Patients: A Bioinformatics Analysis Based on Ferroptosis-Related Genes.

Front Oncol. 2022-2-21

[6]
Identification and Quantification of Necroptosis Landscape on Therapy and Prognosis in Kidney Renal Clear Cell Carcinoma.

Front Genet. 2022-2-14

[7]
A novel defined risk signature based on pyroptosis-related genes can predict the prognosis of prostate cancer.

BMC Med Genomics. 2022-2-8

[8]
Construction and Identification of a Novel 5-Gene Signature for Predicting the Prognosis in Breast Cancer.

Front Med (Lausanne). 2021-10-14

[9]
Comprehensive analysis of the cancer driver genes in breast cancer demonstrates their roles in cancer prognosis and tumor microenvironment.

World J Surg Oncol. 2021-9-10

[10]
Identification of a Tumor Microenvironment-Related Gene Signature Indicative of Disease Prognosis and Treatment Response in Colon Cancer.

Oxid Med Cell Longev. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索