Suppr超能文献

同步一锅法互穿网络形成以扩展三维加工能力

Simultaneous One-Pot Interpenetrating Network Formation to Expand 3D Processing Capabilities.

作者信息

Dhand Abhishek P, Davidson Matthew D, Galarraga Jonathan H, Qazi Taimoor H, Locke Ryan C, Mauck Robert L, Burdick Jason A

机构信息

Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.

BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA.

出版信息

Adv Mater. 2022 Jul;34(28):e2202261. doi: 10.1002/adma.202202261. Epub 2022 Jun 4.

Abstract

The incorporation of a secondary network into traditional single-network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one-pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free-radical crosslinking of methacrylate-modified hyaluronic acid (HA) to form the primary network and ii) thiol-ene crosslinking of norbornene-modified HA with thiolated guest-host assemblies of adamantane and β-cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof-of-concept, the IPN hydrogels are implemented as low-viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.

摘要

将二级网络引入传统的单网络水凝胶中,可以增强其机械性能,如韧性和抗破坏负载能力。这些特性对许多应用都很重要,包括作为生物医学材料;然而,互穿聚合物网络(IPN)水凝胶的加工通常受到其多步制造工艺的限制。在此,报道了一种一锅法合成生物聚合物IPN水凝胶的方案,该方案通过光同时交联两个独立网络来介导,即:i)甲基丙烯酸酯改性透明质酸(HA)的自由基交联以形成初级网络,以及ii)降冰片烯改性HA与金刚烷和β-环糊精的硫醇化客体-主体组装体的硫醇-烯交联以形成二级网络。通过改变网络组成来调节IPN水凝胶的机械性能,高含水量(≈94%)的水凝胶表现出优异的断裂功、拉伸强度和低滞后性。作为概念验证,IPN水凝胶被用作低粘度数字光处理树脂,以制造加载后能恢复形状的复杂结构,以及用于微流控装置中以形成可变形的微粒。此外,IPN与细胞具有相容性,细胞粘附取决于粘附肽的包含情况。总体而言,这些IPN水凝胶加工性能的增强将扩大其在各种应用中的用途。

相似文献

引用本文的文献

1
Light-based vat-polymerization bioprinting.基于光的光固化生物打印
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
2
Advanced cell-adaptable hydrogels for bioprinting.用于生物打印的先进细胞适应性水凝胶
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
4
Lithography-based 3D printing of hydrogels.基于光刻的水凝胶3D打印
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.
5
Fabrication of Microgel-Reinforced Hydrogels via Vat Photopolymerization.通过还原光聚合制备微凝胶增强水凝胶
ACS Macro Lett. 2025 May 20;14(5):603-609. doi: 10.1021/acsmacrolett.5c00086. Epub 2025 Apr 29.
9
Photochemical Control of Network Topology in PEG Hydrogels.聚乙二醇水凝胶网络拓扑结构的光化学控制
Adv Mater. 2024 Nov;36(46):e2409603. doi: 10.1002/adma.202409603. Epub 2024 Sep 28.
10
Additive manufacturing of highly entangled polymer networks.高度缠结聚合物网络的增材制造。
Science. 2024 Aug 2;385(6708):566-572. doi: 10.1126/science.adn6925. Epub 2024 Aug 1.

本文引用的文献

4
Hydrogel microparticles for biomedical applications.用于生物医学应用的水凝胶微粒
Nat Rev Mater. 2020 Jan;5(1):20-43. doi: 10.1038/s41578-019-0148-6. Epub 2019 Nov 7.
7
Photoclick Chemistry: A Bright Idea.光点击化学:一个巧妙的主意。
Chem Rev. 2021 Jun 23;121(12):6915-6990. doi: 10.1021/acs.chemrev.0c01212. Epub 2021 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验