Kirkpatrick Bruce E, Hach Grace K, Nelson Benjamin R, Skillin Nathaniel P, Lee Joshua S, Hibbard Lea Pearl, Dhand Abhishek P, Grotheer Henry S, Miksch Connor E, Salazar Violeta, Hebner Tayler S, Keyser Sean P, Kamps Joshua T, Sinha Jasmine, Macdougall Laura J, Fairbanks Benjamin D, Burdick Jason A, White Timothy J, Bowman Christopher N, Anseth Kristi S
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
Adv Mater. 2024 Nov;36(46):e2409603. doi: 10.1002/adma.202409603. Epub 2024 Sep 28.
Hydrogels are often synthesized through photoinitiated step-, chain-, and mixed-mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step-growth (maleimide dimerization) to chain-growth (maleimide-styrene alternating copolymerization) network-forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high-fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications.
水凝胶通常通过光引发的逐步聚合、链式聚合和混合模式聚合来合成,从而产生依赖于潜在网络连通性的多种网络拓扑结构和由此产生的材料特性。虽然有许多光交联反应可用,但很少有能实现水凝胶网络可控连通性的反应。在此,我们介绍一种通用的光化学策略,用于使用用马来酰亚胺和苯乙烯部分功能化的大分子单体来调节聚乙二醇(PEG)水凝胶的结构。通过改变逐步增长(马来酰亚胺二聚化)与链式增长(马来酰亚胺 - 苯乙烯交替共聚)网络形成反应的比例,沿着拓扑结构梯度制备水凝胶。初始PEG含量和最终网络物理性质(例如模量、溶胀、扩散率)以独立的方式进行调整,突出了可配置的凝胶力学和反应性。这些光化学反应允许进行高保真光图案化和3D打印,并且与2D和3D细胞培养兼容。最终,这种光聚合化学能够轻松控制网络连通性,以实现适用于广泛应用的可调节材料特性。